
G2Q: Haskell Constraint Solving
William T. Hallahan

Computer Science
Yale University

USA
william.hallahan@yale.edu

Anton Xue
Computer Science
Yale University

USA
anton.xue@yale.edu

Ruzica Piskac
Computer Science
Yale University

USA
ruzica.piskac@yale.edu

Abstract
Constraint solvers give programmers a useful interface to
solve challenging constraints at runtime. In particular, SMT
solvers have been used for a vast variety of different, use-
ful applications, ranging from strengthening Haskell’s type
system to verifying network protocols.

Unfortunately, interacting with constraint solvers directly
fromHaskell requires a great deal of manual effort. Datamust
be represented in and translated between two forms: that un-
derstood by Haskell, and that understood by the SMT solver.
Such a translation is often done via printing and parsing text,
meaning that any notion of type safety is lost. Furthermore,
direct translations are rarely sufficient, as it typically takes
many iterations on a design in order to get optimal – or even
acceptable – performance from a SMT solver on large scale
problems. This need for iteration complicates the translation
issue: it is easy to introduce a runtime bug and frustrating
to fix said bug.

To address these problems, we introduce a new constraint
solving library, G2Q. G2Q includes a quasiquoter that allows
solving constraints written in Haskell itself, thus unifying
data representation, ensuring correct typing, and simplifying
development iteration.We describe the API to our library and
its backend. Rather than a direct translation to SMT formulas,
G2Q makes use of the G2 symbolic execution engine. This
allows G2Q to solve problems that are out of scope when
directly encoded as SMT formulas. Finally, we demonstrate
the usability of G2Q via four example programs.

CCS Concepts • Computing methodologies → Sym-
bolic and algebraic manipulation; • Software and its
engineering→ Software libraries and repositories.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’19, August 22–23, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00
https://doi.org/10.1145/3331545.3342590

Keywords constraint solving, Haskell, constraint program-
ming, symbolic execution

ACM Reference Format:
William T. Hallahan, Anton Xue, and Ruzica Piskac. 2019. G2Q:
Haskell Constraint Solving. In Proceedings of the 12th ACM SIGPLAN
International Haskell Symposium (Haskell ’19), August 22–23, 2019,
Berlin, Germany. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3331545.3342590

1 Introduction
The advancements in constraint solvers, such as integer lin-
ear programming and SMT solvers, have enabled a range of
new programming language tools. Such solvers have brought
tackling previously intractable NP-hard problems into the
realm of practicality. In particular, SMT solvers have been
applied to a wide variety of challenges, including tools that
strengthen the Haskell type system [13, 33, 42–44], test
Haskell functions [37], verify DSL programs [17], and syn-
thesize code [35].

Unfortunately, using Haskell to interact with a SMT solver
requires a significant amount of engineering effort. When ap-
plying SMT solvers on some formula, it is frequently the case
that variables, predicates and functions appearing in that
formula require two representations: one in a traditional pro-
gramming language, and one in the language of SMT solvers
via the SMT-LIB format [8]. Additionally, one also needs to
develop a parser which translates from each representation
to the other. Furthermore, one of the most ubiquitous means
of communication is via textual representation, which offers
no type safety. These issues are compounded by the fact that,
often, a direct translation of a problem is not enough. SMT
solvers are sensitive to the encoding scheme [2], and it often
requires several iterations to arrive at the best translation
of a problem to a formula or formulas. In the process of
this iteration it is – naturally – easy to introduce bugs and
mistranslations [1, 32].
To make this more concrete, consider the following sce-

nario: our goal is to write a function, sumToN, which takes
as input two variables: n, an Int, and xs, a list of Ints. The
function sumToN needs to return a non-empty list of Ints ys

such that the sum of all elements of ys is n, and every element
in ys also appears in xs.
One way to approach this problem would be to make

use of a SMT solver. Figure 1 contains an encoding of this
problem in the SMT-LIB format. The encoding can be seen

44

https://doi.org/10.1145/3331545.3342590
https://doi.org/10.1145/3331545.3342590
https://doi.org/10.1145/3331545.3342590

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

(declare-datatypes (T)

((list nil (cons (head T) (tail list)))))

(define-fun-rec sum ((zs (list Int))) Int

(ite (is-nil zs)

0 (+ (head zs) (sum (tail zs)))))

(define-fun-rec length ((zs (list Int))) Int

(ite (is-nil zs)

0 (+ 1 (length (tail zs)))))

(define-fun-rec elem

((z Int) (zs (list Int))) Bool

(ite (is-nil zs) false

(ite (= z (head zs)) true

(elem z (tail zs)))))

(declare-const xs (list Int))

(declare-const ys (list Int))

(declare-const n Int)

(assert (= (sum ys) n))

(assert (forall ((y Int))

(implies (elem y ys) (elem y xs))))

(assert (>= (length ys) 1))

(assert (= xs XS))

(assert (= n N))

(check-sat)

(get-model)

Out: Unknown

Figure 1. Finding the solution to sumToN using a direct encod-
ing to a SMT solver.

as a template describing the above: we first represent a list
datatype in the SMT-LIB format, next we define functions to
sum the elements of the list, we then check if an element is in
a list, and finally we calculate the length of the list (to check
if the list is non-empty). Finally, a SMT solver is invoked at
runtime when the values of n and xs are known. We therefore
have two more assertions, containing the variables XS and
N, which are instantiated with concrete values at runtime.
Analyzing the code in Figure 1 we see that we had to

duplicate much of what already exists in Haskell: the list
datatype, and three functions to manipulate and examine
it. Furthermore, in order to call this code with lists from a
Haskell program, we still need to write code to translate a
Haskell list to a SMT list. After completing all these tasks,
unfortunately our efforts were fruitless: even for very simple
values of xs and n (for example xs = [-5, 5] and n = 0), when
the formula is passed to a state-of-the-art SMT solver, Z3 [12],
Unknown is returned, meaning it could neither find a value for
ys nor determine if such a value exists. Our experimental
evaluations found that Z3 cannot find a solution as soon
as xs has two or more elements due to difficulties that SMT

sumToN :: Int -> [Int] -> IO (Maybe [Int])

sumToN = [g2| \(n :: Int) (xs :: [Int]) ->

?(ys :: [Int])

| sum ys == n

&& all (\e -> e `elem ` xs) ys

&& length ys >= 1 |]

main :: IO ()

main = do

print =<< sumToN 0 [-5, 10, -15 , 20, 25]

Out: Just [20,-15,-5]

Figure 2. Encoding the sumToN problem in the g2 quasiquoter.

solvers have with handling quantified formulas and recursive
definitions [22].
To address all these problems, we introduce G2Q, a new

library that defines the g2 quasiquoter to simultaneously
empower and simplify the solving of complex constraints.
A quasiquoter [31] is a way of using metaprogramming to
embed a domain specific language (DSL) into Haskell. At
compile time, the code encapsulated in the quasiquoter is
automatically translated into traditional Haskell code using
Template Haskell metaprogramming [38].

The g2 quasiquoter, [g2|...|], allows Haskell program-
mers to write constraints in a flexible, type-safe language:
Haskell itself. Programmers do not need to concern them-
selves at all with the low level details of external constraint
solvers. Rather, the library’s quasiquoter allows a program-
mer to write a predicate using traditional Haskell syntax and
Haskell functions while making use of concrete (runtime de-
termined) variables, and symbolic (unknown) variables. The
quasiquoter generates code that will at runtime accept the
concrete arguments and return either (1) Nothing if no values
for the symbolic variables that will satisfy the predicate are
found or (2) Just values for the symbolic variables.

Figure 2 contains the aforementioned sumToN problem, writ-
ten using our quasiquoter. The quasiquoter takes two con-
crete arguments, xs and n, and returns an IO (Maybe [Int])

– a value for ys, if one exists. The function returns in the
IO monad because G2Q’s constraint solving may be non-
deterministic.
Obviously, the quasiquoter code is significantly shorter

and also allows us to reuse the existing Haskell datatypes
and functions. There is another key advantage to using our li-
brary:G2Q is not simply bindings to a SMT solver. Rather, un-
der the hood, G2Qmakes use of an existing Haskell symbolic
execution engine, G2 [20]. Symbolic execution is a technique
that allows running a program with symbolic inputs. By us-
ing symbolic execution, we can reduce the Haskell predicates
to constraints over the symbolic inputs, and then solve those
constraints with a SMT solver. The key toG2Q’s increased ef-
fectiveness, versus the effectiveness of directly calling a SMT

45

G2Q: Haskell Constraint Solving Haskell ’19, August 22–23, 2019, Berlin, Germany

solver, is that a large number of optimizations have been ap-
plied to G2’s execution and constraint solving. In particular,
techniques such as function unrolling and constraint inde-
pendence optimizations [9] allow G2Q to solve predicates
making use of recursive functions and datatypes. As a result,
the g2 quasiquoter can actually solve many problems that are
not solvable with more direct SMT encodings. For instance,
G2Q is capable of handling inputs to sumToN that challenge
SMT solvers. Running sumToN 0 [-5, 10, -15, 20, 25] outputs
a valid solution: Just [20,-15,-5].
The G2 symbolic execution engine used by G2Q is spe-

cially designed to support Haskell’s non-strict semantics.
G2 implements lazy reduction rules on a typed, functional,
intermediate representation, which resembles GHC Core
Haskell [24]. At compile time, the g2 quasiquoter converts
constraints from Haskell code into G2’s intermediate repre-
sentation. Furthermore, it instruments the code with func-
tions to translate input-output between their actual values
and value representations in G2’s intermediate language.
As functions to perform these conversions are defined in a
derivable typeclass, the details of this translation is hidden
from users of the G2Q library.

To evaluate G2Q, we wrote four programs using it. These
programs demonstrate a range of use cases ranging from an
n-queens problem solver to a program analyzer. They also
demonstrate a spectrum of complexity, suggesting possible
ways G2 could be improved and optimized in the future.

In short, we make the following contributions:

1. We describe our library, which provides a quasiquoter
to give programmers access to the capabilites of con-
straint solving via writing Haskell predicates. In ad-
dition, we describe the quasiquoter’s strictness and
fairness properties, which govern how the quasiquoter
handles infinitely large data structures, and searches
over infinitely large sets of values.

2. Behind the scenes, the quasiquoter is using a Haskell
symbolic execution engine, G2, to reduce the user-
written Haskell code to constraints that are solvable by
SMT solvers.We describe howwe compile a quasiquoter
to a form that is runnable in G2.

3. We show code for a number of case studies, demon-
strating a variety of use cases of our library. In the
next section, we will describe a technique to easily
convert a program executor to a program analyzer. In
Section 5, we will present three additional use cases.

2 G2Q for Program Analysis
Haskell is frequently used to implement programming lan-
guages and DSLs [5, 16, 17]. Here, we consider a simple
imperative language with support for basic arithmetics as
shown in Figure 3.
The language supports assertion statements, a common

technique for performing sanity checks and error detection

type Ident = String

type Env = [(Ident , Int)]

type Stmts = [Stmt]

data AExpr = I Int | Var Ident

| Add AExpr AExpr | Mul AExpr AExpr

deriving (Show , Eq, Data)

$(derivingG2Rep ''AExpr)

data BExpr = Not BExpr

| And BExpr BExpr | Or BExpr BExpr

| Lt AExpr AExpr | Eq AExpr AExpr

deriving (Show , Eq, Data)

$(derivingG2Rep ''BExpr)

data Stmt = Assign Ident AExpr | Assert BExpr

| If BExpr Stmts Stmts | While BExpr Stmts

deriving (Show , Eq, Data)

$(derivingG2Rep ''Stmt)

evalA :: Env -> AExpr -> Int

evalA = ...

evalB :: Env -> BExpr -> Bool

evalB = ...

evalStmt :: Env -> Stmt -> Maybe Env

evalStmt e (Assign ident aexpr) =

Just $ (ident , evalA e aexpr) : e

evalStmt e (If bexpr lhs rhs) =

if evalB e bexpr

then evalStmts e lhs

else evalStmts e rhs

evalStmt e (While bexpr loop) =

if evalB e bexpr

then evalStmts e (loop ++ [While bexpr loop])

else Just e

evalStmt e (Assert bexpr) =

if evalB e bexpr then Just e else Nothing

evalStmts :: Env -> Stmts -> Maybe Env

evalStmts = foldM evalStmt

Figure 3. Simple arithmetics language

during software development. The evalStmts function is re-
sponsible for running a program. It accepts an Env – which
maps variables to values, as an input – and also allows the
caller to specify initial values. evalStmts and its subfunctions
either return Just some type if they succeed, or Nothing if an
assertion is violated.

Although this language and its interpreter are rather small,
it suffices to represent many large imperative programs.
Without specialized tooling and engineering overhead, it
can be difficult to tell if and how an assertion will fail.

46

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

prog :: Stmts

prog =

[Assign "k" (I 1),

Assign "i" (I 0),

Assign "n" (I 5),

While (Or (Lt (Var "i") (Var "n"))

(Eq (Var "i") (Var "n")))

[Assign "i" (Add (Var "i") (I 1))],

Assign "z" (Add (Var "k")

(Add (Var "i") (Var "j"))),

Assert (Lt (Mul (Var "n") (I 2)) (Var "z"))

]

Figure 4. A program inspired from [14] written with the
simple arithmetic language shown in Figure 3. It accepts a
variable "j" as input, and checks an assertion at its end.

Consider, for instance, the program in Figure 4. This pro-
gram contains an assertion that claims that upon completing
execution, the assertion (Lt (Mul (Var "n") (I 2)) (Var "z")

will hold. From just manually examining the program, it
is not immediately clear whether inputs exists that violate
this assertion. Of course, one could rely on testing, but such
approaches still require picking the correct values to violate
an assertion.

G2Q provides an easy way for the language developer to
find assertion violations through a symbolic search over the
space of inputs by leveraging the existing evalStmts function.
The developer can simply write the following function:

badEnvSearch :: Stmts -> IO (Maybe Env)

badEnvSearch

= [g2|\(stmts :: Stmts) -> ?(env :: Env) |

evalStmts env stmts == Nothing |]

badEnvSearch takes a concrete Stmts as an arguments, and
searches for an Env that causes evalStmts to evaluate to Nothing,
thereby indicating an assertion violation.
We can run this on the program, to see if it can find an

assertion violation. The call:
env <- badEnvSearch prog

putStrLn $ show env

returns Just [("j",-18)], revealing that an assignment of
j = −18 will lead to an assertion violation. Notably, no ran-
dom testing occurred to land on the value −18. Rather, con-
straints were generated from evalStmts and solved to deter-
mine that j = −18 would violate an assertion.

3 Solver-Aided Interface
In this section, we present the exposed API of G2Q, which
enables Haskell solver-aided programming. We begin with
a description of the core of G2Q: the g2 quasiquoter. Using
this quasiquoter, programmers can write Haskell predicates
over symbolic (unknown) variables and automatically find
concrete values that satisfy the predicate. We then briefly

QQ ::= λ x1 . . . xm → s1 . . . sn | e
x ::= (y :: τ) concrete argument
s ::= ?(y :: τ) symbolic variable

Figure 5. The grammar accepted by G2Q. y and τ represent
standard Haskell variables and types, respectively. e repre-
sents a standard Haskell expression, which must be of type
Bool.

discuss the G2Rep typeclass, which is required to lift values to
and from the quasiquoter. Finally, we discuss the strictness
and fairness guarantees offered by our library.

3.1 The g2 Quasiquoter
The principal feature of G2Q is the g2 quasiquoter which,
as shown in the grammar in Figure 5, uses a slightly edited
version of standard Haskell syntax: concrete arguments x1 ::
τ1 . . . xm :: τm are bound by a lambda expression; symbolic
variables s1 :: τ s1 . . . sn :: τ sn are then specified. Finally, a
predicate e is written over the full set of variables.

The quasiquoter generates a function of type:

τ1 → . . . → τm → IO (Maybe (τ s1 . . . τ
s
n))

At runtime, this function sets the concrete arguments in
the predicate e to the values passed by the user. Next, the
backend attempts to find satisfying instantiations of s1 . . . sn .
If it succeeds, Just a tuple of the found values is returned.
Otherwise, Nothing is returned. Note that there is no guaran-
tee that the backend is deterministic, and as such, the value
is returned in the IO Monad.

3.2 The G2Rep Typeclass
The types of all concrete arguments and symbolic inputs in a
g2 quasiquoter are required to be instances of the G2Rep type-
class which we further describe in Section 4.2. This G2Rep

typeclass is defined by G2Q, to allow lifting instances to
and from the representation required by the g2 quasiquoter.
Defining an instance of G2Rep manually requires knowledge
of the internals of G2Q. To allow programmers to easily use
their own first-order datatypes with the g2 quasiquoter, we
provide derivingG2Rep, a TemplateHaskell function to auto-
matically derive instances of G2Rep with a single line of code.
derivingG2Rep requires only an instance of the Data typeclass
(which is also derivable, using the DeriveDataTypeable lan-
guage extension), and for the ScopedTypeVariables language
extension [25] to be turned on (for reasons discussed in Sec-
tion 4.2).

3.3 Strictness and Fairness
Here, we discuss the strictness and fairness properties of the
g2 quasiquoter.

47

G2Q: Haskell Constraint Solving Haskell ’19, August 22–23, 2019, Berlin, Germany

(a) [g2| \(xs :: [Int]) ->

?(x :: Int) | x == head xs |] [1..]

Out: Just 1

(b) [g2| \(xs :: [Int]) (t :: Int) ->

?(ys :: [Int])

| ys == take t xs |] [1..] 4

Out: Just [1, 2, 3, 4]

(c) [g2| \(xs :: [Int]) -> ?(y :: Int)

| head xs > y && y > 0 |] [0..]

Out: Nothing

Figure 6.Here, we show several examples of G2Q’s behavior
on infinite lists, for which the quasiquoter will give output.
The key requirement is that the predicate require evaluation
of only a finite amount of the infinite input.

(a) [g2| \(xs :: [Int]) ->

?(ys :: [Int]) | xs == ys |] [0..]

Out: ⊥
(b) [g2| \(xs :: [Int]) -> ?(y :: Int)

| all (\x -> y > x) xs |] [0..]

Out: ⊥

Figure 7. Here, we show two examples of G2Q’s behavior
on infinite lists, that will result in non-termination.

data InfList a = InfCons a (InfList a)

deriving Data

headInf :: InfList a -> a

headInf (InfCons x _) = x

(a) [g2| \(t :: Int) -> ?(ys :: InfList Int)

| headInf ys == t |] 1

Out: Just (InfCons 1 (InfCons 1 (InfCons 2 (...))))

(b) [g2| \(x :: Int) -> ?(ys :: InfList Int)

| allInf (> x) ys |] 0

Out: ⊥

Figure 8. Here, we show two examples of g2 quasiquoter’s,
with an output type that is an infinite data structure. When
only a finite amount of the output has to be evaluated to
check the predicate, the quasiquoter can return such an in-
finite data structure. However, trying to satisfy a predicate
that requires evaluating an infinite amount of the infinite
data structure results in non-termination.

3.3.1 Strictness
Strictness refers to the reduction order of an expression
during program execution. The g2 quasiquoter preserves
Haskell’s lazy evaluation semantics [24].

mult :: Int -> Int -> Int

mult n x

| n == 0 = 0

| n >= 0 = x + mult (n - 1) x

| otherwise = mult (n + 1) x - x

[g2| \(x :: Int) ->

?(n :: Int) | mult n x == 10 |] 3

Out: ⊥

Figure 9. A quasiquoter that will fail to terminate, because
of an unsatisfiable predicate involving a recursive function.

Infinite Data Structures As may be expected, lazy evalu-
ation allows the g2 quasiquoter to both consume and produce
infinite data structures. When consuming infinite data struc-
tures, the quasiquoter must be able to fully evaluate the
predicate after evaluating only a finite portion of the struc-
ture. Figure 6 shows several examples where a quasiquoter
can terminate on infinite input, because finding a correct
output requires only a finite portion of the input. Figure 7
shows two examples that will not terminate because there is
no bound on the amount of the input that must be evaluated.

Finally, Figure 8 shows a quasiquoter that produces an in-
finite data structure. Similarly to the input, such quasiquotes
return if and only if checking the correctness of the predicate
requires evaluating only a finite amount of the output.

Recursive Functions G2Q allows arbitrary Haskell code,
including the use of recursive functions. While this can be
quite powerful, it also means care must be exercised if the
input to a recursive function is symbolic. When executed in
a g2 quasiquoter on symbolic values, recursive unrollings of
functions can lead to non-termination even if the function is
guaranteed to terminate when normally executed.

To see why, consider the code in Figure 9. mult is simply an
implementation of multiplication based on repeated addition,
and will always terminate. However, the g2 quasiquoter is
searching for an integer n such that mult n 3 == 10. Of course
no such integer exists, so the predicate is unsatisfiable. How-
ever, the recursive search over the symbolic variable will
result in a deeper and deeper search to find such an n, result-
ing in non-termination.
It follows from the halting problem that any automatic

approach to prevent this kind of error would, unfortunately,
rule out at least some good programs. Given that Haskell
itself does not prove termination, we therefore leave it up to
programmers to ensure their g2 quasiquoters terminate. To
prevent non-termination, it is sufficient to ensure that either
(1) no recursive function call’s termination depends on a
symbolic variable, or (2) whenever a recursive function call
depends on a symbolic variable, the predicate is satisfiable.

48

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

3.3.2 Fairness
We offer two fairness guarantees to users of G2Q. Here, we
present the minimal information needed for users of G2Q.
In Section 4.4, we will revist these guarantees, and provide
justifications. Both are relative to the completeness of the
underlying SMT solver. That is, they are true to the extent
that G2’s underlying SMT solver is able to answer every
query correctly:

1. In a predicate with no recursive function calls or let
bindings, if the predicate is unsatisfiable we will even-
tually return Nothing.

2. If the g2 quasiquoter’s predicate will evaluate to True

given some instantiation of the symbolic variables,
G2Q will eventually return a solution.

In Section 4.4, we will return to and justify these fairness
guarantees.

4 Solver-Aided Backend
The backend of G2Q relies on an existing Haskell symbolic
execution engine, G2 [20]. We give a brief overview of sym-
bolic execution and G2. Then, we elaborate on the design
of each of G2Q’s components. Finally, we state some limita-
tions of our approach and how they may be alleviated in the
future.

4.1 Symbolic Execution
Symbolic execution [10] is a technique that executes a pro-
gramwith symbolic variables constrained by logical formulas,
in place of concrete values. This abstraction allows the sym-
bolic execution engine to explore all paths of a conditional in
a single execution, and using this, yield logical descriptions
of what constraints on the symbolic variables are needed to
execute each path.

4.1.1 Symbolic Execution with G2
G2 extracts Core Haskell from GHC before further trans-
lating Core Haskell into a custom intermediate language.
Symbolic execution in G2 works over a set of states, where
each state is a tuple (E,H , P). Here E is the expression under
evaluation, H is a heap that maps variables to other expres-
sions, and P is a set of formulas that tracks constraints on
the symbolic variables.

While performing symbolic execution, G2 tracks multiple
states at once. For each step of symbolic execution, one ap-
plication of Haskell-like reduction rules [24] are applied to
a state. These rules are augmented to handle symbolic vari-
ables such as splitting (or branching) for case statements and
adding to the path constraint P when necessary. At the end
of executing a state, P can be solved using a SMT solver to
determine concrete inputs that traverse the same execution
path as the state. Symbolic execution finishes when some
stopping criteria is met: in the case of G2Q, when a state

satisfying a quasiquoter’s predicate is found, or all states
have been exhaustively searched.

4.1.2 Symbolic Execution Example
To better illustrate symbolic execution with G2, consider a
lookup function for associative lists as shown in Figure 11.
Using symbolic execution, we can gradually explore the pos-
sible outputs of kvLookup in terms of formulaic constraints on
the input values, as shown in Figure 10.

State 0 We begin symbolic execution on kvLookup by call-
ing it with the symbolic variables myKey and myAssocs. Here,
symbolic variables differ from concrete variables in the sense
that they receive special mappings in the heap. At present,
no path constraints are specified on the symbolic variables.

State 1 A one-step application of the execution semantics
creates the appropriate variable bindings in the heap and
our current expression is now a case statement. In our in-
termediate language (and also Core Haskell), all conditional
branching is eventually reduced to case statements, and for
G2 this is where branching occurs: from State 1 we create
State 2 and State 3.

State 2 This is the state that occurs should we decide to
satisfy the first branch of the case statement. Here, the vari-
able kvs (which maps to the symbolic variable myAssocs in
H) is required to be an empty list. Since Nothing cannot be
reduced anymore, we are done with execution. The resulting
path constraint can be passed off to a SMT solver to produce
solutions for the values of myKey and myAssocs – the former
can be any Int, and the latter must be an empty list.

State 3 Should we choose the other branch of the case
statement, we introduce two additional symbolic bindings
for k and v. Additionally, the path constraint now includes
the condition that kvs must have a head value of (k,v) and a
tail value of a symbolic list called rest.

State 4 Here if we take positive branch for key == k, then
G2 finishes symbolic execution since Just v is evaluated to
its constructor (which all that is required, under Haskell’s
semantics [24]). Passing this set of path constraints to a SMT
solver will reveal that myAssocs must be a list of pairs of at
least length 1, and that the first pair must have a key value
equal to myKey.

State 5 Taking the negative branch for key == k leads to a
recursive call on kvLookup. Similar to State 4, the list myAssocs
must still be non-empty except that the first pair must have
a key value that is not equal to myKey.

State 6 Another recursive call begins. We must ensure that
the variables are appropriately bounded in the heap. Since
kvLookup has recursive calls that are guaraded by symbolic
variables, G2 will continue symbolic execution indefinitely
to enumerate all the possible return results.

49

G2Q: Haskell Constraint Solving Haskell ’19, August 22–23, 2019, Berlin, Germany

State 0
E0 = kvLookup myKey myAssocs

H0 = {myKey 7→ sym, myAssocs 7→ sym} P0 = ∅

State 1
E1 = case kvs of { [] -> ... ; (k,v) : rest -> ... }

H1 = {key 7→ myKey, kvs 7→ myAssocs} P1 = P0

State 2
E2 = Nothing

H2 = H1 P2 = P1 ∪ {kvs = []}

State 3
E3 = case key == k of { True -> ... ; False -> ... }

H3 = H1 ∪ {k 7→ sym, v 7→ sym, rest 7→ sym}

P3 = P1 ∪ {kvs = (k,v) : rest}

State 4
E4 = Just v

H4 = H3 P4 = P3 ∪ {key = k}

State 5
E5 = kvLookup key rest

H5 = H3 P5 = P3 ∪ {key , k}

State 6
E6 = case kvs’ of { [] -> ... ; (k,v) : rest -> ... }

H6 = H5 ∪ {kvs’ 7→ rest, key’ 7→ key} P6 = P5

Figure 10. Symbolic execution example for Figure 11

kvLookup :: Int -> [(Int , a)] -> Maybe a

kvLookup key kvs =

case kvs of

[] -> Nothing

(k, v) : rest ->

case key == k of

True -> Just v

False -> kvLookup key rest

Figure 11. A lookup function for associative lists

class G2Rep g where

g2Rep :: g -> G2Expr

g2UnRep :: G2Expr -> g

g2Type :: g -> G2Type

Figure 12. The G2Rep typeclass, which converts values to and
from G2’s representation.

As a quick summary to highlight important points: states 1
and 3 are states in which new states are formed via branching.
State 5 is an example of a recursive call on kvLookup which
leads to non-termination of symbolic execution unless oth-
erwise bounded by means such as step limits or timeouts.

4.2 The G2Rep Typeclass
A slightly simplified version of the G2Rep typeclass is shown
in Figure 12 (some types from G2 that do mundane map-
ping have been hidden, to simplify the presentation.) It in-
cludes three functions: g2Rep, g2UnRep, and g2Type. The g2Rep

class G2Rep a => G2Rep [a] where

g2Rep [] = g2Nil (g2Type (undefined :: a))

g2Rep (x:xs) =

g2Cons (g2Type (undefined :: a))

(g2Rep x) (g2Rep xs)

...

Figure 13. The g2Rep definition for lists. We denote the stan-
dard Haskell list constructors as : and [], and G2’s represen-
tation of a list as g2Cons and g2Nil, respectively.

and g2UnRep functions map from real Haskell values to G2’s
representations of those values and back. g2Type is a helper
function for g2Rep and g2UnRep: polymorphic type arguments
are explicitly represented in G2’s core language, and so we
require g2Type to give us access to the G2 representation of
the type of polymorphic arguments.
Figure 13 shows part of the definition of G2Rep for lists.

For the most part, the mapping is very routine – the sole
point of interest is the use of g2Type. Sometimes (as in the
expression for a nil list constructor) we require calling the
instance of g2Type for a type of which we do not have a value.
Fortunately, we can insist that undefined is a value of any type
and use it to call the appropriate g2Type. This does require the
ScopedTypeVariables language extension to be enabled, so
that the type variable in the instance declaration and the type
variable in the function body are bound to the same type. If
a programmer tries to deriving G2Rep without enabling the
extension, we show a error message, reminding them to turn
it on.

50

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

4.3 g2 Quasiquoter Compilation
We now describe the translation of a g2 quasiquoter into a
Template Haskell expression.

Imported Modules G2Q allows making use of functions
from imported modules, as long as the source code is avail-
able for G2 to compile into its internal representation.We use
Template Haskell to pull the list of imported modules from
the current file and use a cabal file [23] to search for them.
We also utilize a custom version of the standard Haskell Base
and Prelude [34], which supports many of the commonly
used types and functions (and which we are working on
expanding).

Parsing G2Q accepts a lightly modified version of tradi-
tional Haskell syntax. The only differences are:

1. We require type annotations to be given in the concrete
variable lambda binding.

2. We introduce a new notation to specify symbolic vari-
ables.

Our parser extracts the concrete variables along with their
types x1 :: t1 . . . xm :: tm, the symbolic variables and types
s1 :: ts1 . . . sn :: tsn, and the predicate expression e from
the g2 quasiquote. Then, it rewrites the user’s query as a
Haskell predicate function with both the concrete and sym-
bolic variables bound by lambda expressions, in addition to
an explicit type signature:

pred :: t1 -> ... tm -> ...

ts1 -> ... tsn -> Bool

pred x1 ... xm s1 ... sn = e

We then use G2’s existing parser (which itself makes use
of GHC’s parser) to translate this traditional Haskell code
into G2’s internal representation.

State Construction We construct a state s = (E,H , P). H
is a heap containing functions from imported modules, and
P is initialized to empty. We initalize E to:

let r = pred x1 ... xm s1 ... sn

in assume r (s1, ..., sn)

x1 to xm are placeholders for the concrete arguments (which
will be replaced in the next step), assume p e assumes the
predicate p holds and then returns e. Thus, the code in E
will force the quasiquoter’s predicate to hold, and if it does,
return a tuple of the values of the symbolic variables.

Argument Bindings For each concrete argument x1 . . . xm
we construct a Template Haskell expression that will bind
g2_xi to g2Rep xi at runtime. Then, we construct a runtime
call to a function named floodConsts, which receives the state
s = (e, h, p) and a list of the g2_xi as arguments. floodConsts
lazily (so as to not force too much of the input values) re-
places each concrete argument in the states expression e

with the g_xi from the list.

Solving Symbolic Variables Given a state with the con-
crete arguments filled in via floodConsts, G2 is able to symboli-
cally execute the state (as discussed in Section 4.1) at runtime.
Assuming it terminates (as discussed in Section 3.3.1), G2’s
constraint solving finds concrete values for the symbolic
variables and returns a tuple of the found solutions. We then
use g2UnRep to lazily translate the tuple from G2’s represen-
tation into regular Haskell values. g2UnRep’s laziness allows
returning infinite data structures when needed, as discussed
in Section 3.3.1.

Type Safety We use Template Haskell to, at compile time,
wrap each input to g2Rep and call to g2UnRep with an explicit
type annotation. These annotations provide programmers
with type errors if they try to mistype an argument or the
returned value.

4.4 Fairness and Heuristic Search
As discussed in Section 3.3.2, G2Q offers two fairness guar-
antees. We justify theses fairness guarantees here and then
discuss some heuristics we implement as well as how those
heuristics preserve the fairness guarantees.

4.4.1 Fairness Guarantees
We begin by presenting and justifying our fairness guaran-
tees. Both guarantees are relative to the completeness of the
underlying constraint solver.

Guarantee 1 First, we guarantee that, if the predicate in
the quasiquoter contains no recursive function calls or re-
cursive let bindings, and is unsatisfiable, the quasiquoter
will eventually terminate by returning Nothing. This can be
trivially seen from an examination of the reduction rules
used by G2, as shown in [20]. The only possible source of
an infinite loop is a recursive call, since all other reduction
rules reduce the size of the expression being evaluated and
thus will lead to termination. Therefore, in the absence of a
recursive function call or recursive let binding we can fully
explore the set of possible states and return Nothing if all are
unsatisfiable.

Guarantee 2 The second guarantee is that, if there is some
instantiation of the symbolic variables such that the predicate
in the quasiquoter q will evaluate to true, some solution will
eventually be returned.

To ensure this, it is sufficient to show that:
1. Whenever we hit a branch in the code, we create states

to explore along each possible branch.
2. If some state exists, and it has not yet fully executed

to True or False, either the state will eventually be exe-
cuted, or some other state will be executed that returns
a solution.

(1) can be seen from an examination of the reduction
rules, in [20]. The sources of branching are limited, all case
expression branches are initialized as separate states.

51

G2Q: Haskell Constraint Solving Haskell ’19, August 22–23, 2019, Berlin, Germany

(2) is trickier, as it requires us to fairly evaluate all states.
Otherwise, we might only evaluate some subset of states
where the predicate is false and miss some state where the
predicate is true. To ensure that (2) holds, we fix a predicate p
that we know any state we execute will eventually violate (an
example of such a guarantee is given below, in Section 4.4.2.)
We then store the states in a queue.

During symbolic execution, we pop the state at the head
of the queue. We symbolically execute this state either until
we discover that it satisfies the quasiquoter’s predicate q or
until it has violated the predicate p. If the state is not yet
fully evaluated but p becomes false, we re-insert the state
at the end of the queue. If the state splits at a branch, we
arbitrarily choose one of the states to continue executing.
The others get inserted at the end of the queue.

With this scheme we can see via a classic argument that
all states not yet fully evaluated will eventually be executed
(unless another state that satisfies q is found first). At any
point such a state s is in the queue. Suppose there are s# states
ahead of the s in the queue. Since we (at least temporarily)
halt execution of every state eventually, either one of those
s# states will turn out to be a solution or s will eventually be
executed.

4.4.2 Symbolic Execution Heuristics
A challenge in making symbolic execution effective for find-
ing solutions are the heuristics employed. In particular, be-
cause symbolic execution tracks multiple states at once, yet
(outside of parallelization) only one state is executed at a
time, the order in which states are chosen for reduction is cru-
cial. A bad ordering causes an increase in the time required
to find a satisfying solution to the predicate.

G2Q employs a heuristic that prioritizes states with fewer
symbolic variables. The intuition is that such states will
(often) lead to fewer new path constraints – resulting in
cheaper calls to the SMT solver, and reduced future state
splitting.

Preserving Fairness As described in the previous section,
our fairness guarantee depends on a queue, with some pred-
icate p that will eventually be violated. To ensure that we
violate the p with this heuristic, we choose p to be that the
state (1) contains fewer symbolic variables than the state
at the head of the queue, and (2) has increased its symbolic
variable count in the last k steps (for some fixed k).

If condition (2) is consistently met, then eventually condi-
tion (1) will be violated, and the state will be sent to the back
of the queue. Otherwise, condition (2) will send the state
to the back of the queue. Thus our predicate is sufficient to
guarantee fairness.

4.5 Limitations
Scoping and Module Imports A g2 quasiquoter requires
that all functions and datatypes used in it are defined in

an imported module, and cannot use functions or datatypes
declared in the same module. This is because in order to
perform symbolic execution, G2 has to be able to compile
the code in the quasiquoter – and the code’s dependencies –
to G2’s internal representation. Trying to compile themodule
the quasiquoter is in would result in an infinite loop.

Argument Types Within a quasiquoter, G2Q requires that
type signatures be provided (rather than inferred) for the
concrete and symbolic arguments to the g2 quasiquoter. In
addition, we require that such types be monomorphic and are
also first-order. It should be stressed that these restrictions
apply only to the quasiquoters arguments. Within the rest of
the predicate’s code, polymorphic and higher order functions
may be used.

The source of each of these limitations is in fact the same.
Currently, G2Q relies on having access to all the code used
in g2 quasiquoter available at compile time, so that it can
compile the code into G2’s intermediate representation. If a
programmer tries to use some library thatG2Q cannot access
the code for, an error is given at compile time. Allowing
passing arbitrary higher order functions would require G2Q
to have some way of dynamically converting the passed
function to G2’s representation at runtime. Typeclasses are,
in the internals of both GHC and G2, just a dictionary of
higher order functions [19] and thus present the same issue.
To simplify for end users and hopefully prevent confu-

sion, we disallow polymorphism entirely since we cannot
support typeclasses. It is possible that this decision is overly
conservative, and if that proves to be the case, we could
relax the restriction to allow limited polymorphism in the
future. However, we want to get further experience using
G2Q before making this decision.

Base Support In order to make use of datatypes and func-
tions from Base, G2Q requires them to be compiled into our
intermediate language. As compiling Base is a complicated
process which relies closely on GHC, G2 currently make use
of a custom Base library. As such, G2, and by extension G2Q,
currently supports only a subset of functions and datatypes.

In the future, we plan on expanding this subset. In addition,
we plan to investigate means by which we could compile the
whole of Base (such as instrumenting GHC to write out our
intermediate language, for example).

5 Evaluation and Case Studies
We have made G2Q available on Hackage at http://hackage.
haskell.org/package/g2q. Additionally, G2 is available on
Hackage at http://hackage.haskell.org/package/g2. Here, we
present case studies and an evaluation, showing how G2Q
can be used to solve a variety of problems.

52

http://hackage.haskell.org/package/g2q
http://hackage.haskell.org/package/g2q
http://hackage.haskell.org/package/g2

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

type Ident = Int

data Expr = Var Ident

| Lam Expr

| App Expr Expr

deriving (Show , Read , Eq, Data)

$(derivingG2Rep ''Expr)

type Stack = [Expr]

eval :: Expr -> Expr

eval = eval ' []

eval ' :: Stack -> Expr -> Expr

eval ' (e:stck) (Lam e') =

eval ' stck (rep 1 e e')

eval ' stck (App e1 e2) = eval ' (e2:stck) e1

eval ' stck e = app $ e:stck

rep :: Int -> Expr -> Expr -> Expr

rep i e v@(Var j)

| i == j = e

| otherwise = v

rep i e (Lam e') = Lam (rep (i + 1) e e')

rep i e (App e1 e2) =

App (rep i e e1) (rep i e e2)

app :: [Expr] -> Expr

app = foldl1 App

num :: Int -> Expr

num n = Lam $ Lam $

foldr1 App (replicate n (Var 2) ++ [Var 1])

Figure 14. De Bruijn index based lambda calculus and eval-
uator.

5.1 Programming by Example in Lambda Calculus
Programming by example is a paradigm that allows code to
be synthesized from input-output examples.

Consider a lambda calculus language and evaluator based
on De Bruijn indexing [11] as shown in Figure 14. De Bruijn
indexing eliminates variable names, by writing bound vari-
ables as an integer that indicates the number of lambdas
between the variable and its binder.

The evaluator function eval for the lambda calculus is stan-
dard: it simplifies a lambda expression as much as possible
and then outputs it to the user.
Inspired by the programming by example paradigm [26,

30], one can use G2Q to not only execute lambda calculus
expressions but to also synthesize expressions based on input-
output examples.

To do this, we may write a function as follows:

solveDeBruijn :: [([Expr], Expr)]

-> IO (Maybe Expr)

solveDeBruijn =

[g2| \(es :: [([Expr], Expr)])

-> ?(func :: Expr) |

all (\e -> (eval (app (func : fst e)))

== snd e) es |]

The solveDeBruijn function takes an input list of pairs of the
form (arguments, result). The goal is to then synthesize a new
function func such that when all the arguments are applied to
func, the result yielded is result.
As a simple example consider the Haskell const function,

which takes two arguments and returns the first unmodified.
By writing the function call:

solveDeBruijn [([num 1, num 2], num 1)

, ([num 2, num 3], num 2)]

we can synthesize a lambda expression with this effect:
Lam (Lam (Var 2))

Somewhat less trivially, we can use the Church encoding
of Booleans [6] to synthesize Boolean functions. In Church
encoding we denote True as Lam (Lam (Var 2)) and False as
Lam (Lam (Var 1)).

Using these definitions, we canwrite examples for Boolean
functions, such as or:

solveDeBruijn [([trueLam , trueLam], trueLam)

, ([falseLam , falseLam], falseLam)

, ([falseLam , trueLam], trueLam)

, ([trueLam , falseLam], trueLam)]

and synthesize correct definitions for those functions:
Lam (App (Var 1) (Var 1))

5.2 n-Queens
A mathematical puzzle called the n-queens problem asks
how n queen pieces may be placed on an n × n chess board
such that no two queens threaten each other [36]. That is,
no two queens may be in the same row, column, or diagonal.
We demonstrate how this problem may be solved with G2Q
via an encoding in Figure 15.

Since no two queens may be in the same row and we have
n queens to be placed in n rows, there is clearly a queen in
every row. Thus, we represent the set of queens by a list of
Int’s, where the Int j in the ith position in the list, indicates
there is a queen at (i, j). allQueensSafe checks if the given
list of Queens is a valid solution to the n-queens problem.
Specifically, it checks if the list is the correct length, that all
the queens on in legal positions, and that none of the queens
can attack each other.

A classic version of this problem is for a traditional chess-
board with n = 8. The solution that G2Q produces for the
8-queens problem is shown in Figure 16.

53

G2Q: Haskell Constraint Solving Haskell ’19, August 22–23, 2019, Berlin, Germany

type Queen = Int

indexPairs :: Int -> [(Int ,Int)]

indexPairs n =

[(i, j) | i <- [0.. n-1], j <- [i+1..n-1]]

legal :: Int -> Queen -> Bool

legal n qs = 1 <= qs && qs <= n

queenPairSafe :: Int -> [Queen]

-> (Int , Int) -> Bool

queenPairSafe n qs (i, j) =

let qs_i = qs !! i

qs_j = qs !! j

in (qs_i /= qs_j)

&& qs_j - qs_i /= j - i

&& qs_j - qs_i /= i - j

allQueensSafe :: Int -> [Queen] -> Bool

allQueensSafe n qs =

(n == length qs)

&& all (legal n) qs

&& (all (queenPairSafe n qs) (indexPairs n))

Figure 15. N-Queens

8 0Z0l0Z0Z
7 Z0Z0ZqZ0
6 qZ0Z0Z0Z
5 Z0Z0l0Z0
4 0l0Z0Z0Z
3 Z0Z0Z0Zq
2 0ZqZ0Z0Z
1 Z0Z0Z0l0

a b c d e f g h

Figure 16. A solution to 8-queens produced by G2Q

5.3 Regular Expressions
Borrowing an example from SmtEn [41], suppose a user has
written a regular expression implementation as a domain
specific language. The implementation includes a match func-
tion which, given a regular expression and a string, returns
whether the string matches the regular expression.

Provided a regular expression written in such a DSL, it
may be helpful to search for examples of strings that are

accepted by this regular expression. Such a problem is ex-
amined in SmtEn, but requires the user to also implement
several functions to assist the search. We demonstrate how
G2Q and match can be used to solve this problem, with very
little additional code required from the user. We defer further
discussion of SmtEn to Section 6.

First, we augment the RegEx algebraic data type with a Data

derivation, as well as a derivingG2Rep. Other parts of the code
may be left untouched.

data RegEx =

Empty -- The empty language

| Epsilon -- The empty string

| Atom Char | Star RegEx

| Concat RegEx RegEx | Or RegEx RegEx

deriving (Show , Eq, Data)

$(derivingG2Rep ''RegEx)

match :: RegEx -> String -> Bool

match = ...

SmtEn’s implementation of regular expressions includes
both Epsilon to denote the empty string, as well as Empty for
the empty language. Next, we encode a query into the g2

quasiquoter
stringSearch :: RegEx -> IO (Maybe String)

stringSearch =

[g2| \(r :: RegEx) -> ?(str :: String) |

match r str |]

Finally, we can call this search function with a regular
expression:

-- (a + b)* c (d + (e f)*)

stringSearch $

Concat (Star (Or (Atom 'a') (Atom 'b')))

(Concat (Atom 'c')

(Or (Atom 'd')

(Concat (Atom 'e') (Atom 'f '))))

G2Q is able to successfully find a string – Just "cd" –matched
by this regular expression.

5.4 Evaluation
While writing the case studies we discovered two key factors
that affect performance: predicate order in the quasiquoter
and state explosion. Here we discuss both these factors and
then address the runtimes of our case studies.

Predicate Order Simple changes to the predicate can have
a dramatic affect on runtime. For example, consider
allQueensSafe' in Figure 18. This function is the same as
allQueensSafe from Figure 15, except that the constraint on
the length of the list has been moved from being the first con-
joined constraint to the last. However, solving the 8-queens
problem with allQueensSafe takes only 2.30 seconds while
solving it with allQueensSafe' takes 36.42 seconds. This is
because constraining the length of the list allows quickly
filtering out many states where the list is either too long
or too short. In future work it would be valuable to explore

54

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

Task Time (secs)
badEnvSearch prog 59.32
Search for non-zero Mul x y == Add x y 0.56
solveDeBruijn for id 0.04
solveDeBruijn for const 1.06
solveDeBruijn for NOT Timeout
solveDeBruijn for OR 86.22
solveDeBruijn for AND Timeout
solveQueens 4 0.36
solveQueens 5 0.55
solveQueens 6 0.90
solveQueens 7 1.47
solveQueens 8 2.30
stringSearch for (a + b)∗c(d + (e f)∗) 0.26
stringSearch for abcde f 4.23
stringSearch for a + b + c + d + e + f 0.05
stringSearch for a∗b∗c∗d∗e∗ f ∗ 0.02

Figure 17. Case study running times.

allQueensSafe ' :: Int -> [Queen] -> Bool

allQueensSafe ' n qs =

all (legal n) qs

&& (all (queenPairSafe n qs) (indexPairs n))

&& (n == length qs)

Figure 18. allQueensSafe' is the same as allQueensSafe, from
Figure 15, except the constraint on the list length is moved
to the end of the function. This change has a dramatic affect
on running time. Solving 8-queens with allQueensSafe takes
only 2.30 seconds, while using allQueensSafe' requires 36.42
seconds.

ways of automatically reordering predicates to optimize per-
formance.

State Explosion Programs with large amount of branch
can cause symbolic execution to suffer from state explosion,
in which the number of states the symbolic execution engine
generates and must evaluate grows exponentially. In partic-
ular, G2’s current handling of symbolic algebraic datatypes
can cause it to branch into many states. In future work we
hope to implement state merging in order to reduce the
number of states that must be individually evaluated.

Evaluation Results Figure 17 shows evaluation results
from our case studies and some other associated bench-
marks. We ran all tests with a timeout of two minutes. Two
of the tests did not terminate in this time. These timeouts
are largely due to state explosion from G2’s handling of al-
gebraic datatypes. In future work we hope to improve there
performance by implementing state merging.
Despite the timeouts, we view these results as very posi-

tive. All our benchmarks involve programs with recursion

and yetG2Qmanages to solve eight of the benchmarks in un-
der a second. In contrast, unassisted SMT solvers are known
to struggle with recursion or loops [22]. Thus, even with the
timeouts, our results indicate an improvement over direct
encoding of SMT formulas.

6 Related Work
Here we give an overview of related work, with a particular
focus on work that aims to simplify the use of SMT solving
in high level languages.

Solver-Aided Languages LikeG2Q, SmtEn [41] is designed
to ease using SMT solvers in Haskell. However, the inter-
faces provided by the two tools are quite different. SmtEn
provides users with functions to build up a Space (that is, a
set) and then use a SMT solver to search through the Space,
for a value that satisfies some condition. In contrast, with
our tool, the quasiquoter can be called directly, with no need
to provide a set of possible instantiations.
In fact, both SmtEn and G2Q’s APIs have advantages.

SmtEn’s treatment of Spaces as first class values allows them
to be passed around and manipulated in code before being
queried. On the other hand, as treated in SmtEn, a Space
either has to be built from other Spaces, or constructed from
scratch as a singleton. As such, constructing a Space results
in a great deal of often tedious code, which can be avoided
by our approach.

We see great potential in combining the approach of Spaces,
(or some close equivalent) and our quasiquoter approach. For
example, one could imagine a hybrid approach that uses a
g2-like quasiquoter to construct Space-like values. We leave
such considerations to future work.
Curry [21] is a logic driven functional programming lan-

guage. Curry may be seen as an approach to design a func-
tional language around logic programming. In contrast, G2Q
is an attempt to fit constraint solving into an existing func-
tional language. As such, G2Q’s semantics (that is, really
Haskell’s semantics) are likely more comfortable for existing
Haskell programmers.
Rosette [39, 40] is an extension of Racket, which allows

for constraint based programming. Unlike G2Q, Rosette re-
quires that all constraint generation be self-finitizing; that
is, all constraint generation must terminating. The trade-off
here is that, Rosette, unlike G2Q, offers guaranteed termina-
tion. However, this also means that Rosette rules out some
valid programs. Rosette supports only symbolic integers and
booleans, while G2Q supports lifting any first-order value
to a symbolic value (given an instance of G2Rep).

Like Rosette, Kaplan [28] allows for constraint based pro-
gramming, although in Scala rather than in Racket. Like
G2Q, Kaplan supports a variety of types, including algebraic
datatypes. Due to Racket and Scala both being strict lan-
guages, however, neither Rosette nor Kaplan account for
non-strict execution.

55

G2Q: Haskell Constraint Solving Haskell ’19, August 22–23, 2019, Berlin, Germany

Compile-time TheoremProving HALO [45] and [46] aim
to translate Haskell programs into first-order logic in order
to apply contract verification to Haskell programs. G2Q, on
the other hand, is aimed at supporting runtime constraint
solving in Haskell while these tools instead focus on ensuring
that Haskell programs satisfy contract specifications.

Constraint-Based Synthesis Complete Functional Syn-
thesis [29] also describes a technique to write programs by
writing constraints. Unlike the other discussed work, it relies
on synthesis of code at compile time, rather than constraint
solving at runtime. This presents a trade-off: the code it syn-
thesizes is more efficient, but the logic it can reason about is
more restricted. For example, Complete Functional Synthesis
does not support recursive functions or algebraic datatypes.

SMT APIs A number of SMT solvers, including Z3 [12],
CVC4 [7], and Yices [15], have API interface for a variety of
languages. Depending on the language the API is intended
for, some of these offer strong type guarantees. Relatedly,
there are Haskell packages [3, 18] and packages for other
languages [4, 27] that expose strongly typed bindings to
SMT solvers. However, these sorts of API interfaces are all
very close to the abstraction level of the SMT solver, as they
directly expose SMT constructs. In addition, these strongly
typed API interfaces still require a great deal of manual work
related to duplicating and copying data.

7 Conclusion
We present G2Q, a quasiquoter for Haskell to ease access
to constraint solving. By leveraging the G2 symbolic execu-
tion engine, G2Q allows users to easily encode constraints
with minimal engineering overhead, and a higher level of
abstraction than with tools like SMT solvers.

Acknowledgments
We thank the anonymous reviewers for their feedback on
this paper. This work was supported by the the National
Science Foundation under Grant Numbers CCF-1553168 and
CCF-1302327.

References
[1] [n. d.]. Difference in behavior between ‘declare-const + assert‘ and

‘define-fun‘. https://github.com/Z3Prover/z3/issues/2139. Accessed:
2019-10-05.

[2] [n. d.]. Strange performance for (= x y) vs. (= y x). https://github.com/
Z3Prover/z3/issues/1822. Accessed: 2019-10-05.

[3] Iago Abal. [n. d.]. z3 (Hackage Package). http://hackage.haskell.org/
package/z3

[4] Siddharth Agarwal. 2012. Functional SMT solving: A new interface for
programmers. Master’s thesis, Indian Institute of Technology Kanpur
(2012).

[5] Markus Aronsson and Mary Sheeran. 2017. Hardware Software Co-
design in Haskell. In Proceedings of the 10th ACM SIGPLAN Interna-
tional Symposium on Haskell (Haskell 2017). ACM, New York, NY, USA,
162–173. https://doi.org/10.1145/3122955.3122970

[6] Henk P Barendregt. 1992. Lambda calculi with types. (1992).

[7] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli.
2011. CVC4. In Proceedings of the 23rd International Conference on Com-
puter Aided Verification (CAV ’11) (Lecture Notes in Computer Science),
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer,
171–177. http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
Snowbird, Utah.

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-
LIB Standard 2.6. 103. http://smtlib.cs.uiowa.edu/papers/smt-lib-
reference-v2.6-r2017-07-18.pdf

[9] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs.. In OSDI, Vol. 8. 209–224.

[10] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software
testing: three decades later. Commun. ACM 56, 2 (2013), 82–90.

[11] Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with
nameless dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. In Indagationes Mathemati-
cae (Proceedings), Vol. 75. Elsevier, 381–392.

[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Hei-
delberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.1792766

[13] Iavor S. Diatchki. 2015. Improving Haskell Types with SMT. In Pro-
ceedings of the 2015 ACM SIGPLAN Symposium on Haskell (Haskell
’15). ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/2804302.
2804307

[14] Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated error
diagnosis using abductive inference. In ACM SIGPLAN Notices, Vol. 47.
ACM, 181–192.

[15] Bruno Dutertre and Leonardo De Moura. 2006. The yices smt solver.
Tool paper at http://yices. csl. sri. com/tool-paper. pdf 2, 2 (2006), 1–2.

[16] Anton Ekblad. 2017. A meta-EDSL for Distributed Web Applications.
In Proceedings of the 10th ACM SIGPLAN International Symposium
on Haskell (Haskell 2017). ACM, New York, NY, USA, 75–85. https:
//doi.org/10.1145/3122955.3122969

[17] Trevor Elliott, Lee Pike, Simon Winwood, Pat Hickey, James Bielman,
Jamey Sharp, Eric Seidel, and John Launchbury. 2015. Guilt Free
Ivory. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell
(Haskell ’15). ACM, New York, NY, USA, 189–200. https://doi.org/10.
1145/2804302.2804318

[18] Levent Erkök. [n. d.]. SBV: SMT based verification in Haskell. http:
//hackage.haskell.org/package/sbv

[19] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. 1996. Type Classes in Haskell. ACM Trans. Program. Lang. Syst.
18, 2 (March 1996), 109–138. https://doi.org/10.1145/227699.227700

[20] William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala,
and Ruzica Piskac. 2019. Lazy Counterfactual Symbolic Execution.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2019). ACM, New York,
NY, USA, 411–424. https://doi.org/10.1145/3314221.3314618

[21] Michael Hanus, Herbert Kuchen, and Juan Jose Moreno-Navarro. 1995.
Curry: A truly functional logic language. In Proc. ILPS, Vol. 95. 95–107.

[22] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving Practical Distributed Systems Correct. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP ’15). ACM, New
York, NY, USA, 1–17. https://doi.org/10.1145/2815400.2815428

[23] Isaac Jones. 2005. The Haskell Cabal, a common architecture for
building applications and libraries. (2005).

[24] Simon L Peyton Jones. 1992. Implementing lazy functional languages
on stock hardware: the Spineless Tagless G-machine. Journal of func-
tional programming 2, 2 (1992), 127–202.

56

https://github.com/Z3Prover/z3/issues/2139
https://github.com/Z3Prover/z3/issues/1822
https://github.com/Z3Prover/z3/issues/1822
http://hackage.haskell.org/package/z3
http://hackage.haskell.org/package/z3
https://doi.org/10.1145/3122955.3122970
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/2804302.2804307
https://doi.org/10.1145/2804302.2804307
https://doi.org/10.1145/3122955.3122969
https://doi.org/10.1145/3122955.3122969
https://doi.org/10.1145/2804302.2804318
https://doi.org/10.1145/2804302.2804318
http://hackage.haskell.org/package/sbv
http://hackage.haskell.org/package/sbv
https://doi.org/10.1145/227699.227700
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/2815400.2815428

Haskell ’19, August 22–23, 2019, Berlin, Germany William T. Hallahan, Anton Xue, and Ruzica Piskac

[25] Simon Peyton Jones and Mark Shields. 2004. Lexically-scoped type
variables. (2004).

[26] Susumu Katayama. 2013. MagicHaskeller on the Web: Automated
programming as a service. In Haskell Symposium.

[27] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. 2011. Scala to
the Power of Z3: Integrating SMT and Programming. In International
Conference on Automated Deduction. Springer, 400–406.

[28] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. 2012. Constraints
As Control. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’12). ACM,
New York, NY, USA, 151–164. https://doi.org/10.1145/2103656.2103675

[29] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter.
2010. Complete Functional Synthesis. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’10). ACM, New York, NY, USA, 316–329. https:
//doi.org/10.1145/1806596.1806632

[30] Henry Lieberman. 2001. Your wish is my command: Programming by
example. Morgan Kaufmann.

[31] Geoffrey Mainland. 2007. Why It’s Nice to Be Quoted: Quasiquoting
for Haskell. In Proceedings of the ACM SIGPLAN Workshop on Haskell
Workshop (Haskell ’07). ACM, New York, NY, USA, 73–82. https:
//doi.org/10.1145/1291201.1291211

[32] Mladen Nikoli\’c. 2012. Statistical Methodology for Comparison of SAT
Solvers. In EMSQMS 2010. Workshop on Evaluation Methods for Solvers,
and Quality Metrics for Solutions (EPiC Series in Computing), Aaron
Stump, Geoff Sutcliffe, and Cesare Tinelli (Eds.), Vol. 6. EasyChair,
33–38. https://doi.org/10.29007/bhvj

[33] Divesh Otwani and Richard A. Eisenberg. 2018. The Thoralf Plugin:
For Your Fancy Type Needs. In Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell (Haskell 2018). ACM, New York,
NY, USA, 106–118. https://doi.org/10.1145/3242744.3242754

[34] Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised
report. Cambridge University Press.

[35] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram Synthesis from Polymorphic Refinement Types. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’16). ACM, New York, NY, USA, 522–538.
https://doi.org/10.1145/2908080.2908093

[36] Igor Rivin, Ilan Vardi, and Paul Zimmermann. 1994. The n-queens
problem. The American Mathematical Monthly 101, 7 (1994), 629–639.

[37] Eric L Seidel, Niki Vazou, and Ranjit Jhala. 2015. Type targeted test-
ing. In European Symposium on Programming Languages and Systems.
Springer, 812–836.

[38] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-
programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16.
https://doi.org/10.1145/581690.581691

[39] Emina Torlak and Rastislav Bodik. 2013. Growing Solver-aided Lan-
guages with Rosette. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming & Software (Onward! 2013). ACM, New York, NY, USA, 135–152.
https://doi.org/10.1145/2509578.2509586

[40] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic
Virtual Machine for Solver-aided Host Languages. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, New York, NY, USA, 530–541.
https://doi.org/10.1145/2594291.2594340

[41] Richard Uhler and Nirav Dave. 2014. Smten with satisfiability-based
search. In ACM SIGPLAN Notices, Vol. 49. ACM, 157–176.

[42] Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and
Graham Hutton. 2018. Theorem Proving for All: Equational Reasoning
in Liquid Haskell (Functional Pearl). In Proceedings of the 11th ACM
SIGPLAN International Symposium on Haskell (Haskell 2018). ACM,
New York, NY, USA, 132–144. https://doi.org/10.1145/3242744.3242756

[43] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: Expe-
rience with Refinement Types in the Real World. In Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell (Haskell ’14). ACM, New
York, NY, USA, 39–51. https://doi.org/10.1145/2633357.2633366

[44] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and
Simon Peyton-Jones. 2014. Refinement Types for Haskell. In Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’14). ACM, New York, NY, USA, 269–282.
https://doi.org/10.1145/2628136.2628161

[45] Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan
Rosén. 2013. HALO: Haskell to logic through denotational semantics.
In ACM Sigplan Notices, Vol. 48. ACM, 431–442.

[46] Dana N Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static
contract checking for Haskell. Vol. 44. ACM.

57

https://doi.org/10.1145/2103656.2103675
https://doi.org/10.1145/1806596.1806632
https://doi.org/10.1145/1806596.1806632
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.29007/bhvj
https://doi.org/10.1145/3242744.3242754
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2628136.2628161

	Abstract
	1 Introduction
	2 G2Q for Program Analysis
	3 Solver-Aided Interface
	3.1 The [style=hsksty]g2 Quasiquoter
	3.2 The [style=hsksty]G2Rep Typeclass
	3.3 Strictness and Fairness

	4 Solver-Aided Backend
	4.1 Symbolic Execution
	4.2 The [style=hsksty]G2Rep Typeclass
	4.3 [style=hsksty]g2 Quasiquoter Compilation
	4.4 Fairness and Heuristic Search
	4.5 Limitations

	5 Evaluation and Case Studies
	5.1 Programming by Example in Lambda Calculus
	5.2 n-Queens
	5.3 Regular Expressions
	5.4 Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

