
Lazy Counterfactual Symbolic Execution

William T. Hallahan
Computer Science
Yale University

USA
william.hallahan@yale.edu

Anton Xue
Computer Science
Yale University

USA
anton.xue@yale.edu

Maxwell Troy Bland
Computer Science & Engg.

University of Califonia, San Diego
USA

mbland@eng.ucsd.edu

Ranjit Jhala
Computer Science & Engg.

University of Califonia, San Diego
USA

jhala@cs.ucsd.edu

Ruzica Piskac
Computer Science
Yale University

USA
ruzica.piskac@yale.edu

Abstract

We present counterfactual symbolic execution, a new ap-
proach that produces counterexamples that localize the
causes of failure of static verification. First, we develop a
notion of symbolic weak head normal form and use it to de-
fine lazy symbolic execution reduction rules for non-strict
languages like Haskell. Second, we introduce counterfactual
branching, a new method to identify places where verifi-
cation fails due to imprecise specifications (as opposed to
incorrect code). Third, we show how to use counterfactual
symbolic execution to localize refinement type errors, by
translating refinement types into assertions. We implement
our approach in a new Haskell symbolic execution engine,
G2, and evaluate it on a corpus of 7550 errors gathered from
users of the LiquidHaskell refinement type system. We show
that for 97.7% of these errors, G2 is able to quickly find coun-
terexamples that show how the code or specifications must
be fixed to enable verification.

CCS Concepts · Theory of computation → Abstrac-

tion; · Computing methodologies → Symbolic and al-

gebraic manipulation.

Keywords symbolic execution, Haskell, lazy, counterfac-
tual, counterexamples

ACM Reference Format:

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala,

and Ruzica Piskac. 2019. Lazy Counterfactual Symbolic Execution.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314618

In Proceedings of the 40th ACM SIGPLANConference on Programming

Language Design and Implementation (PLDI ’19), June 22ś26, 2019,

Phoenix, AZ, USA. ACM, New York, NY, USA, 14 pages. https://doi.

org/10.1145/3314221.3314618

1 Introduction

Modular verifiers allow programmers to specify correctness
properties of their code using function contracts, such as pre-
and post-conditions (e.g. EscJava [9], Dafny [20]), or refine-
ment types (e.g. DML [42], F* [33]). Unfortunately, modular
verifiers can be very difficult to use: when verification fails,
the hapless programmer is given no feedback about why
their code was rejected, let alone how they can fix it.

There are two ways in which modular verification can fail
when checking if a function f satisfies a contract given by a
pre-condition P and a post-condition Q . First, the code may
be wrong. That is, the precondition P may be too weak and
the postcondition may only hold on a smaller set of inputs
than those described by the precondition. Alternatively, the
postcondition Q may be too strong i.e. the function’s code is
incorrect and establishes a weaker property than stipulated
by the postcondition.
Second, more perniciously, the code of f may be correct,

but verification may still fail as the library functions’ con-
tracts may be wrong: the post-condition for some callee
(library) function д may not capture enough information
about the values returned by that function in order to allow
the desired property to be established at the caller (client)
f . For example, consider the Dafny [20] code shown in Fig-
ure 1. The Dafny verifier rejects this code, complaining that
it cannot prove the postcondition for main. The problem here
is not the code, which is clearly correct, but that the contract
for incr is too weak: the post-condition that it returns a non-
negative value is not enough to prove the post-condition
that main returns x + 2.

One might be tempted to use bounded model checking [2]
or symbolic execution [15] to enumerate paths through the
code in order to find execution traces that witnesses the
failure i.e. to find set of inputs that satisfy the precondition

411

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3314221.3314618

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

method incr(x : int) returns (r : int)

requires 0 ≤ x ensures 0 ≤ r

{ r := x + 1; }

method main(x : int) returns (r : int)

requires 0 ≤ x ensures r = x + 2

{ var tmp := incr(x); r := incr(tmp); }

Figure 1. A Dafny program where main fails to verify due
to a weak specification for incr.

but which produce an output which violates the postcondi-
tion [5]. However, this approach will be fruitless in the case
where the code actually satisfies the contract but verification
fails due to imprecise specifications for callee functions.
We introduce the novel concept of abstract counterexam-

ples to help programmers debug errors due to imprecise
specifications. An abstract counterexample for a function f

and its callee д is a partial definition of д that satisfies д’s
contract, but creates a violation of f ’s contract. For the code
in Fig. 1 we aim to find an abstract counterexample:

main (0) = 0

violating the contract of 'main ' if

incr (0) = 0

Strengthen contract of 'incr '

to eliminate this possibility

The counterexample is a partial definition of the callee incr

where incr(0) = 0. This definition satisfies incr’s contract
but causes a violation of the caller main’s contract. The user
can use the above to strengthen incr’s contract to r == x + 1

to verify main.

In this paper, we develop and evaluate lazy counterfactual

symbolic execution, a new technique to generate concrete and
abstract counterexamples that localize the causes of failure
of static modular verification for non-strict languages like
Haskell. We do so via the following concrete contributions.

1. Lazy Symbolic Evaluation Our first contribution is a
lazy symbolic execution engine (ğ 3) for a language with
non-strict semantics. Existing work on symbolic execu-
tion [3, 14, 24] uses laziness as an implementation technique
to improve the efficiency of symbolic execution for languages
with strict semantics. On the other hand, our work describes
symbolic execution of Haskell, a language with non-strict se-

mantics. Consequently, as we show in ğ 2.2, existing symbolic
execution engines can fail to find simple counterexamples
that arise with lazy evaluation. Similarly, they can return
spurious counterexamples that are avoided by lazy evalua-
tion.

We solve this problem by augmenting classical lazy graph
reduction semantics [21, 28, 29] with symbolic variables to
reduce terms into Symbolic Weak Head Normal Form, that
only computes values as needed, thereby obtaining the first
symbolic execution framework for a non-strict language.

2. Counterfactual Branching Our second contribution is
the notion of counterfactual branching that allows us to si-
multaneously conduct a symbolic search for both concrete
and abstract counterexamples (ğ 4). A counterfactual branch
denotes a choice between two alternative implementations
of some function, e.g. the function’s concrete implementation
or an abstract one derived from the function’s specification.
Our key insight is that we can find abstract counterexamples
by finding a counterfactual branch from which all concrete

executions are safe, but from which some abstract execution
leads to an error.

3. Refinement Types as Contracts Our third contribution
is to show how to use counterfactual symbolic execution to
localize the cause of refinement type errors (ğ 5). We show
how to translate refinement types into value-level assertions
and where refinement type specifications for functions are
translated into the abstract implementations to be used at
counterfactual branches.

4. Implementation and Evaluation Our last contribution
is an implementation of our approach as a tool, G2. We eval-
uate G2 on a corpus of 7550 refinement type errors from
users of LiquidHaskell, a verification tool that has been used
to verify various properties of the Haskell standard libraries
[39] (ğ 6). G2 is able to quickly find counterexamples 97.7%
of the time. 57.6% of the time, G2 finds concrete counterex-
amples showing how the code fails the specification, and
40.1% of the time it finds abstract counterexamples caused
by an imprecise specification. By comparing the łerrorž-ing
programs with their łfixedž versions we find that the ab-
stract counterexamples correctly pinpoint the library func-
tion whose specification was too weak in 96.1% of the cases,
demonstrating the importance, effectiveness and practicality
of counterfactual symbolic execution in making modular
verification more usable.

2 Overview

We start with an overview of our goals and the challenges
posed by lazy evaluation and refinement type error local-
ization, and show how we solve these challenges via lazy
counterfactual symbolic execution.

2.1 Goal: Symbolic Execution

Our first goal is to implement a symbolic execution engine
for non-strict languages like Haskell. Such an engine would
take as input a program like:

intersect :: (Eq a) => [a] -> [a] -> [a]

intersect xs ys = [x|x <- xs , any (x ==) ys]

any :: (a -> Bool) -> [a] -> Bool

any _ [] = False

any p (x:xs) = p x || any p xs

412

Lazy Counterfactual Symbolic Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

let xs ! j = case xs of

h:t -> case j == 0 of

True -> h

False -> t ! j-1

repl n = n : repl (n + 1)

i = ?; k = ?

in assert (repl i ! k == i)

Figure 2. Program with assertion over an infinite list that
strict analyzers would struggle with.

together with a property, specified as an assertion about the
behavior of the program over some unknown inputs, e.g.
that the intersect function above was commutative:

let xs = ?; ys = ? in assert

(xs `intersect ` ys == ys `intersect ` xs)

Our engine then symbolically evaluates all executions of the
above program (up to some given number of reduction steps)
to find a counterexample, i.e. values for xs and ys under
which the asserted predicate is False:

counterexample: assert fails when

xs = [0, 1], ys = [1, 1, 0]

2.2 Challenge: Lazy Evaluation

While there are several symbolic execution engines that can
produce the above result [5], including those for functional
languages like F # [34], Scala [16], and Racket [35, 37], all of
these tools assume strict or call-by-value semantics. This is
problematic for a non-strict language (like Haskell.) Strict
evaluation can both miss assertion failures, and report spuri-
ous failures that cannot occur under lazy evaluation.

Strictness Reports Spurious Failures Consider:

let f x = 10; g _ = assert False in f (g 0)

Under strict evaluation, g 0 would be computed first, violat-
ing the assertion. However, under non-strict semantics, f is
evaluated first, and immediately returns 10 without evaluat-
ing its argument. Thus, as g 0 is never reduced, the assertion
is never evaluated and, hence, does not fail.

Strictness Misses Real Failures Even worse, strict sym-
bolic execution can miss errors in code that relies explicitly
on lazy evaluation. For example, consider the code in Fig-
ure 2. The code uses two functions, !, which returns the j-th
element of the list xs, and repl, which returns an infinite
list starting at n. The code asserts that the k-th element of
repl i should be i. Strict symbolic execution will keep un-
folding the infinite list corresponding to the term repl i, and
thus, will miss that the assertion can be violated by lazily
evaluating the asserted predicate on a finite prefix.

2.3 Solution: Lazy Symbolic Execution

In this paper we solve the problems caused by strictness by
developing a novel lazy symbolic execution algorithm. At a

high-level, our algorithm mimics the lazy graph reduction
semantics of non-strict languages like Haskell, where terms
are only reduced by need, up to Weak Head Normal Form

(WHNF), i.e. enough to resolve pattern-match branches. Our
key insight is that we can generalize the classical semantics
to account for symbolic values that denote unknown inputs,
by developing a notion of Symbolic WHNF (SWHNF), where
terms are reduced up to symbolic variables whose values
are constrained by path constraints that capture the branch
information leading up to that point in the execution.

Symbolic States Symbolic execution evaluates a State,
which is a triple (E,H , P) comprised of an expression E being
evaluated, a heap H , mapping variables to other expressions,
and path constraints P , which are logical formulas constrain-
ing the values of symbolic variables in E and H .

Symbolic Execution Tree Figure 3 shows the tree of states
resulting from symbolic executing the code in Figure 2. Each
node is a symbolic state, and has children corresponding to
the states that the parent node can transition to.

• Initial State: The initial symbolic state S0 is comprised
of E0, the source program expression, H0, the initial
empty heap, and P0, the trivial path constraint (True).
• Variable Binding: S0 →֒ S1 accounts for the let-
bindings, which are not evaluated, but are, instead,
bound on the heap as shown in S1. The symbolic vari-
ables k and i correspond to the (unknown) input val-
ues.
• Variable Lookup and Application: S1 →֒ S2 looks up
and applies the definition of the list index operator ! to
repl i and k. Due to laziness, we create fresh bindings
on the heap, rather than evaluate the arguments.
• Lazy Evalution to Symbolic WHNF: S2 →֒ S3 looks
up xs2 ś namely repl i ś and lazily evaluates it to
SWHNF, i.e. precisely enough to determine which of
the patterns to branch on. Under strict semantics, the
list would have to be completely evaluated before pick-
ing a case alternative, but since repl generates an infi-
nite list, this evaluation would never terminate.
• Pattern Matching: S3 →֒ S4 matches the non-empty list
against the cons-pattern by introducing fresh binders
h4 and t4, and binding them to the the respective terms
on the heap H4.
• Symbolic Branching: At S4, the scrutinized expression
is j2 = 0 which, after looking up j2 in the heap, is
k = 0. This contains a symbolic value k and hence,
is in SWHNF, so it could evaluate to True or False.
Therefore, there are two possible transitions, to S5 and
S7. We strengthen the path constraints P5 and P7 with
k = 0 and ¬k = 0 respectively, to record the condition
under which the transition occured. S5 →֒ S6 looks up
h4 to reduce the asserted predicate to a tautology i = i ,
meaning the assertion holds.

413

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

S0 E0 = let . . . in assert(repl i ! k = i) H0 = ∅ P0 = ⊤

S1 E1 = assert(repl i ! k = i) H1 = {! 7→ . . . , repl 7→ . . .} ∪ H0 P1 = ⊤

S2 E2 = assert((case xs2 of {h:t → . . .}) = i) H2 = {xs2 7→ repl i, j2 7→ k } ∪ H1 P2 = ⊤

S3 E3 = assert((case (i : repl (i + 1)) of {h:t → . . .}) = i) H3 = H2 P3 = ⊤

S4 E4 = assert((case j2 = 0 of {True→ h4; False→ t4 ! (j2 − 1)}) = i) H4 = {h4 7→ i, t4 7→ repl (i + 1)} ∪ H3 P4 = ⊤

S5 E5 = assert(h4 = i)

H5 = H4 P5 = k = 0

S6 E6 = assert(i = i)

H6 = H5 P6 = k = 0

S7 E7 = assert((t4 ! (j2 − 1)) = i) H7 = H4 P7 = k , 0

S8 E8 = assert((case xs8 of {h:t → . . .}) = i)

H8 = {xs8 7→ t4, j8 7→ (j2 − 1)} ∪ H7 P8 = k , 0

S9 E9 = assert((case ((i + 1) : repl . . .) of {. . .}) = i) H9 = H8 P9 = k , 0

S10 E10 = assert((case (j8 = 0) of {True→ h10; False→ t10 : (j8 − 1)}) = i)
H10 = {h10 7→ (i + 1), t10 7→ repl((i + 1) + 1)} ∪ H9 P10 = k , 0

S11 E11 = assert(h10 = i) H11 = H10 P11 = k , 0 ∧ k − 1 = 0

S12 E12 = assert(i + 1 = i) H12 = H11 P12 = k , 0 ∧ k − 1 = 0

true

Assertion passed!

false

true false

Assertion violated!

Figure 3. Symbolic Execution Tree for Example from Figure 2.

• Recursive Unfolding: The symbolic execution contin-
ues to explore the other branch, S4 →֒ S7. Again, the
binders are lazily looked up on the heap. Via a se-
quence of transitions we arrive at S10, where the head
of the list is bound to the value h10 = i + 1.
• Assertion Failure: Again, at S11 we have a symbolic
branch on the term k − 1 = 0. This time, however, the
True branch transitions to S12 where the asserted pred-
icate has been reduced to h10 = i . S11 →֒ S12 looks
up h10 in the heap to find that the asserted predicate,
i + 1 = i , is not True. Thus, our symbolic execution
reports a counterexample to the assertion in Figure 2.

We can obtain a satisfying assignment (i.e. a model) for
the path constraints at the point of violation to obtain con-
crete values for the symbolic inputs that lead to the failure.
This allows us to determine concrete values that violate the
assertion. For example, here, the SMT solver tells us that the
assertion is violated when k = 1 and not, e.g. when k = 0.

2.4 Refinement Type Counterexamples

A refinement type constrains classical types with predicates
in decidable first-order logics. For example, we can specify
that the function die should never be called at run-time by
assigning it the type:

die :: {x : String | false} -> a

die x = error x

The refinement type checker will verify that at each call-site,
the function die is called with values satisfying the condition
false. As no such value exists, the code will only typecheck
if all calls to die are, in fact, provably unreachable.

A restricted class of functions may be lifted into refine-
ment types to specify properties of algebraic data types. For
example, the following function computes the size of a list:

size [] = 0

size (x:xs) = 1 + size xs

Using size, one can write a safe head function as:

head :: {xs:[a] | size xs > 0} -> a

head (x:xs) = x

head [] = die "Bad call to head"

The input refinement type of head states that it is only called
with positively-sized lists. As in the second equation the size
is equal to 0, the second pattern is inconsistent with the input
refinement, and hence, provably never reachable.

Concrete Counterexamples It is often not obvious why a
refinement type fails. Consider zip, defined below:

zip :: xs:[a] -> {ys:[b]

| size xs > 0 => size ys > 0} -> [(a, b)]

zip [] [] = []

zip (x:xs) (y:ys) = (x, y):zip xs ys

zip _ _ = die "Bad call to zip"

The function iterates over two lists and produces a new list
of corresponding pairs. It is rejected by the refinement type
checker LiquidHaskell [40] with the vexing error:

zip (x:xs) (y:ys) = (x, y):zip xs ys

^^^^^^^^^

Inferred type

VV : {v : [a] | size v >= 0 && len v >= 0

&& v == ys}

not a subtype of Required type

VV : {VV : [a] |size xs > 0 => size VV > 0}

414

Lazy Counterfactual Symbolic Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

This error can be more confusing than helpful. Instead, a
counterexample that illustrates an instance where program
execution violates the refinement types may provide better
insight. Running our tool yields the following:

zip [] [0] = error

makes a call to

die "Bad call to zip" = error

violating die 's refinement type

The counterexample ([] [0]) illustrates an input that sat-
isfies zip’s precondition, but causes zip to invoke the die

function.With this information in hand, the user can see how
to improve the refinement type (namely it is not enough that
the second list be non-empty when the first is - we require
that the lists have the same size.)

2.5 Localizing Imprecise Refinement Types

Next, consider concat, which concatenates a list of lists into
a single list, with the goal of verifying that the size of the
returned list is the sum of the sizes of the lists in the input:

sumsize [] = 0

sumsize (x:xs) = size x + sumsize xs

concat :: x:[[a]] -> {v:[a]

| size v = sumsize x}

concat [] = []

concat (xs:[]) = xs

concat (xs:(ys:xss)) =

concat ((append xs ys):xss)

append xs [] = xs

append [] ys = ys

append (x:xs) ys = x:append xs ys

This concat implementation is correct, but is rejected by
LiquidHaskell. Tomake verificationmodular, and hence, scal-
able, at each function call, LiquidHaskell is only aware of the
refinement type of the callee, and not the actual definition.
Thus, when trying to verify concat, LiquidHaskell knows
nothing about the value returned by append.
Thus, the above example illustrates a common, and con-

fusing, situation where the verifier rejects a program, not
because the property being checked does not hold (as in
zip), but because the specifications for called functions are
too weak. Worse, as the code is correct, we cannot report
counterexamples, since they do not exist.

Abstract Counterexamples In this situation, ideally we
would point the user to the function whose type needs to be
tightened. We do so by introducing the notion of an abstract

counterexample, where we show how the overall property
can be violated by using an abstract implementation of the
callee that is derived solely from the (refinement type) speci-
fication for the callee.
For example, an abstract counterexample for concat is:

concat [[0], []] = [0, 0]

violating its refinement type , if

append [0] [] = [0, 0]

Strengthen the refinement type of append

to eliminate this possibility

The abstract counterexample tells the user that the existing
specification for append permits the call append [0] [] to
return [0, 0], causing the evaluation of concat [[0], []]

to return a value that violates its specification.
Crucially, the abstract counterexample points the user to

the fact that the error only arises due to the (trivial) refine-
ment type specification for append and not due to the actual
implementation of the function. Inspired by this message, a
user could improve the type refinement on append to:

append :: x:[a] -> y:[a]

-> {z:[a] | size x + size y = size z}

which then lets LiquidHaskell verify concat.

Counterfactual Symbolic Execution We can find both
concrete and abstract counterexamples with a new tech-
nique called counterfactual symbolic execution. We intro-
duce a counterfactual branching operator, essentially a non-
deterministic choice operator that can evaluate either of its
two arguments. Each function definition is replaced with
a counterfactual branch that non-deterministically chooses
either the concrete implementation, or an abstract version
derived solely from the function’s refinement type.

We can then run symbolic execution as before, and report
an abstract counterexample at those counterfactual branches
where the concrete choice produces no counterexamples,
but the abstract one does. In this case, as illustrated above,
we can also report exactly how the abstract implementation
leads to a property violation.

3 Lazy Symbolic Execution

Here, we describe a core language λG (ğ 3.1), which draws in-
spiration from GHC’s Core language [27]. We formalize lazy
symbolic execution as a novel reduction semantics (ğ 3.3).
We then show how to extend this language with counterfac-
tual branching (ğ 4), and how to use the resulting framework
to localize refinement type errors (ğ 5).

3.1 Syntax

Figure 4 summarizes the syntax of our core language λG , a
typed lambda calculus extended with special constructs for
symbolic execution.

• Terms include literals, variables, data constructors,
function application, lambda abstraction, let bindings,
and case expressions.
• Case expressions case e of {a} operate on algebraic
data types. We refer to e as the scrutinee, and to a

as alternatives, each of which maps a pattern D x ś
comprising a constructor D and a sequence of (bound)

415

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

e ::= Expressions

| x variable
| s symbolic variable
| l literal
| λx . e abstraction
| D data constructor
| e e application
| e ⊕ e primitive operation
| let x = e in e let
| case e of {a} case
| ? : τ symbolic generator
| e □ e counterfactual branch
| assume e in e assumption
| assert e in e assertion
| CRASH assertion failure

a ::= D x → e Alternatives

Figure 4. λG grammar

pattern variables x ś to the expression that should be
evaluated when the scrutinee matches the pattern. As
is standard, Boolean branches correspond to a case-of
over the patterns True and False.
• Symbolic variables denote some unknown value. We
assume that all symbolic binders are to first order val-
ues: higher-order values are orthogonal and can be
handled via the approach of [35].
• Symbolic generator expressions ? : τ are used to
introduce new symbolic variables of type τ .
• Assume expressions assume e1 in e2 condition the eval-
uation of e2 upon whether e1 evaluates to True and
cause evaluation to halt otherwise.
• Assert expressions assert e1 in e2 check that e1 evalu-
ates to True and cause evaluation to CRASH otherwise.
• Counterfactual branch expressions e1 □ e2 nondeter-
ministically evaluates to either e1 or e2.

Types Every expression has a type. We write e : τ to de-
note that e has type τ . Type checking λG is standard for
polymorphic functional languages, e.g. the rules used in Sys-

tem F↑
C
[29], and is omitted for brevity. assume e1 in e2 and

assert e1 in e2 require that e1 have type Bool. In a counter-
factual branch, both expressions must have the same type.

3.2 Symbolic States

Next, we formalize the notion of lazy symbolic execution by
presenting a new symbolic, non-strict operational seman-
tics for λG formalized via rules that show how a program
transitions between symbolic states. Figure 5 summarizes
the syntax of symbolic states, S , which are tuples of the form
(E,H , P). The expression E corresponds to the term that is
being evaluated. The heap H is a map from (bound) vari-
ables x to terms e. As is standard, the heap is used to store
unevaluated thunks (i.e. unevaluated expressions) until the

S ::= (E,H , P) State

E ::= e Expression

H ::= {x 7→ e} Heap

P ::= ∧ipi Path Constraint

p ::= Logical Predicate

| x = D x constructor binding
| b boolean expression in SWHNF

Figure 5. Symbolic States

point at which they are needed. The path constraint P is a
conjunction of logical formulas that describes the values that
(symbolic) variables must have in order for computation to
have proceeded up to the given state. We will use P to cap-
ture the conditions under which evaluation proceeds along
different case-branches.

Well-formedness Only symbolic variables may occur free
in a state, all other variables are bound, either on the heap, or
by a lambda, let, or case expressions. We denote the binding
of a variable x to an expression e in the heap H as H {x = e}.
We write lookup(H , x) for the expression to which x is bound
in H . If there is no such binding, lookup(H , x) is not defined.

Symbolic Variables and Primitive Applications Sym(e)

checks if an expression is a symbolic variable, or is a primi-
tive application that cannot be concretely reduced:

Sym(e) =

True e = s

True e = e1 ⊕ e2 ∧ (Sym(e1) ∧ Sym(e2))

True e = e1 ⊕ l ∧ Sym(e1)

True e = l ⊕ e2 ∧ Sym(e2)

False otherwise

Symbolic Weak Head Normal Form The essence of non-
strict semantics, e.g. in Haskell, is to reduce expressions to
Weak Head Normal Form (WHNF) [29], i.e. a literal, lambda
abstraction, or data constructor application. Consequently,
the heart of our lazy symbolic execution is a notion of Sym-

bolic Weak Head Normal Form (SWHNF), that generalizes
WHNF to account for (unknown) symbolic values. Formally,
an expression e is in SWHNF if the predicate SWHNF(e) holds:

SWHNF(e) =

True e ≡ l

True e ≡ s

True e ≡ D e

True e ≡ λx . e

True e ≡ e1 ⊕ e2 ∧ Sym(e)

False otherwise

3.3 Symbolic Execution Transitions

We formalize lazy symbolic execution via the transition re-
lation S →֒ S ′ that says that the state S takes a single step
to the state S ′. The transition relation is formalized via the
rules in Figures 6 and 7. For some states, more than one rule

416

Lazy Counterfactual Symbolic Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

applies, or there is more than one way to apply a single rule.
From the perspective of a single execution, this requires a
nondeterministic decision to apply one of the rules. However,
during symbolic execution, we split the state, by applying
each potential rule, allowing us to explore all possible pro-
gram runs up to some bounded number of transitions.

3.3.1 Lazy Transitions

We now describe the reduction rules, shown in Figure 6, that
formalize lazy execution.

Bindings and variables are implemented via lazy evalua-

tion facilitated by the heap. Var and Var-Red lookup a con-
crete variable, x , in the heap, to find the expression it is
mapped to, e . If e is already in SWHNF, it is simply returned
by Var. Otherwise, Var-Red reduces e to an expression, e ′, in
SWHNF, before both returning e ′, and remapping x to e ′ in
the heap. Typically, Var-Red is simply an optimization in case
x is reevaluated: sinceHaskell is pure, evaluating e repeatedly
would be semantically correct, but inefficient [21]. However,
in Section 3.3.2, we will see that during symbolic execution
with symbolic generators or counterfactual branching, this
rule takes on a new importance.

Let and App-Lam both bind an expression in the heap,
without evaluating the expression. App reduces the function
in a function application, without reducing the arguments.

Primitive operations arguments are evaluated to SWHNF
by Pr-L and Pr-R. If both of the arguments of a primitive are
concrete literals, Pr evaluates the primitive concretely.

Case expressions require the scrutinee be evaluated to
SWHNF, so that the correct alternative can be picked. This
evaluation is performed by Case-Ev. If the scrutinee is con-
crete, Case continues evaluation on the correct alternative
expression. If the scrutinee is a symbolic variable, Case-Sym
nondeterministically chooses an alternative expression.

3.3.2 Symbolic Transitions

We now turn our attention to the reduction rules in Figure 7,
which shows constructs particular to symbolic execution.

Counterfactual branches proceed nondeterministically by
either Ch-L or Ch-R, allowing reduction on either e1 or e2.

Symbolic generators are evaluated using Sym-Gen, which
introduces a fresh symbolic value s .

Assume expressions are evaluated by first reducing the pred-
icate ep to SWHNF using Assume-Ev. Then, the rule Assume

adds the predicate to the path constraint, thereby recording
that the predicate must hold for computation to proceed.

Assert expressions are handled similarly in that the pred-
icate is first reduced to SWHNF. Next, we check that the
predicate actually evaluates to Trueś otherwise execution
CRASH-es due to an assertion violation. To this end, Assert-
Crash queries the SMT solver for satisfying assignments of
our symbolic variables, that falsify the predicate, i.e. which

cause the predicate to evaluate to False. If the SMT solver
finds such an assignment, we can show the user the inputs
that cause the assertion violation. If no such assignment can
be found, Assert proceeds to evaluate the inner expression
eb under a strengthened path constraint.

3.3.3 Impurity of Symbolic Transition Rules

Unlike GHC’s Core Haskell, λG is impure, due to Symbolic
Generators and Counterfactual Branching. For instance, con-
sider the λG program in Figure 8a. This program is reducible
to four different values in SWHNF: 4, 2 * s, s * 2, or s * s'

(where s and s' are symbolic variables.) The evaluation of
f 2 may vary, even in a single reduction.
When symbolically executing the program, we explore

each of these 4 branches separately. However, it is often
desirable to require two values to match within an individual
state. For example, we might wish to ensure that both calls
to f 2 either result in 2, or result in the same symbolic value.

We can achieve this with the program shown in Figure 8b.
In a strict, call by value language, it would be clear why this
program achieved the desired result: y would be computed
only once, during the let binding, and before the evaluation of
the multiplication. In a lazy setting, f 2 is stored as a thunk,
and only computed when forced by the multiplication. A
natural question then arises: why does this program work
in our lazy setting?

This is a result of us taking advantage of the Var-Red rule.
During normal execution, this rule is just an optimization,
but during symbolic execution, it allows us to control non-
purity. In the modified program, in Figure 8b, it means that,
even though the reduction is performed only when needed,
the reduction of y (and thus the reduction of f 2) is still per-
formed only once. Thus, there are only 2 possible values in
SWHNF: 4, and s * s.

3.3.4 Completeness of Symbolic Execution

We write →֒c for the concrete transition relation obtained
by replacing the rule Sym-Gen with Conc-Gen, shown be-
low, which replaces a symbolic generator with some total
expression of the suitable type:

H ⊢ e ′ : τ

(? : τ ,H , P) →֒c (e
′
,H , P)

Conc-Gen

The concrete transitions correspond exactly to the usual stan-
dard non-strict operational semantics; there are no symbolic
values anywhere, and the path constraint is just True.

Completeness Let →֒∗ and →֒∗c respectively denote the re-
flexive transitive closure of →֒ and →֒c . We can prove by
induction on the length of the transition sequences that if
the concrete execution can CRASH then so can the symbolic
execution:

Theorem 1. (e, ∅, True) →֒∗c (CRASH, ·, ·) iff (e, ∅, True) →֒∗

(CRASH, ·, ·).

417

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

e = lookup(H ,x)
SWHNF(e)

(x ,H , P) →֒ (e,H , P)
Var

e = lookup(H ,x) ¬SWHNF(e)
(e,H , P) →֒ (e ′,H ′, P ′)

(x ,H , P) →֒ (e ′,H ′{x = e ′}, P ′)
Var-Red

x ′ fresh
e ′1 = e1[x

′/x] e ′2 = e2[x
′/x]

(let x = e1 in e2,H , P) →֒

(e ′2,H {x
′
= e ′1}, P)

Let

¬SWHNF(f) (f ,H , P) →֒ (f ′,H ′, P ′)

(f e,H , P) →֒ (f ′ e,H ′, P ′)
App

x ′ fresh e ′1 = e1[x
′/x] H ′ = H {x ′ = e2}

((λx . e1) e2,H , P) →֒ (e ′1,H
′
, P)

App-Lam

(e1,H , P) →֒ (e ′1,H
′
, P ′)

(e1 ⊕ e2,H , P) →֒ (e ′1 ⊕ e2,H
′
, P ′)

Pr-L
SWHNF(e1) (e2,H , P) →֒ (e ′2,H

′
, P ′)

(e1 ⊕ e2,H , P) →֒ (e1 ⊕ e
′
2,H

′
, P ′)

Pr-R

l1 ⊕ l2 = l

(l1 ⊕ l2,H , P) →֒ (l ,H , P)
Pr

¬SWHNF(e) (e,H , P) →֒ (e ′,H ′, P ′)

(case e of {a},H , P) →֒ (case e ′ of {a},H ′, P ′)
Case-Ev

x ′ = x ′1 . . . fresh

(case D e1 . . . of {D x → e, . . .},H , P) →֒

(e[x ′/x],H {x ′1 = e1 . . .}, P)

Case
Sym(e) x ′ = x ′1 . . . fresh

(case e of {D x → ea , . . .},H , P) →֒

(ea[x
′/x],H , P ∧ e = D x ′)

Case-Sym

Figure 6. Lazy Transition Rules

(e1 □ e2,H , P) →֒ (e1,H , P)
Ch-L

(e1 □ e2,H , P) →֒ (e2,H , P)
Ch-R

s fresh

(? : τ ,H , P) →֒ (s,H , P)
Sym-Gen

(ep ,H , P) →֒ (e ′p ,H
′
, P ′)

(assume ep in eb ,H , P) →֒ (assume e ′p in eb ,H
′
, P ′)

Assume-Ev
SWHNF(ep)

(assume ep in eb ,H , P) →֒ (eb ,H , ep ∧ P)
Assume

(ep ,H , P) →֒ (e ′p ,H
′
, P ′)

(assert ep in eb ,H , P) →֒ (assert e ′p in eb ,H
′
, P ′)

Assert-Ev
SWHNF(ep)

(assert ep in eb ,H , P) →֒ (eb ,H , ep ∧ P)
Assert

SWHNF(ep) isSMTSat(¬ep ∧ P)

(assert ep in eb ,H , P) →֒ (CRASH,H ,¬ep ∧ P)
Assert-Crash

Figure 7. Symbolic Transition Rules

let f = λx . x □ ? in f 2 * f 2

(a) A program which evaluates f 2 twice.

let f = λx . x □ ?; y = f 2 in y * y

(b) A program which evaluates f 2 once.

Figure 8. Two impure λG programs.

4 Counterfactual Symbolic Execution

Modular verifiers allow users to write and automatically
check contracts (specifications, describing preconditions or
postconditions) on functions. Unfortunately, verification er-
rors can be difficult for users, as error messages typically
involve logical formulas, which may not be obviously linked
to the written contract.

As discussed in ğ 2.4 and ğ 2.5 we use symbolic execution
to find two types of counterexamples. Ideally, we find con-

crete counterexamples, i.e. actual function inputs that violates

a contract. However, we also introduce abstract counterex-
amples, found via counterfactual symbolic execution, to help
debug spurious errors. As shown in ğ 2.5, counterfactual
symbolic execution finds partial function definitions for di-
rectly called functions that obey their function contracts, but
demonstrate why the caller’s contract is not verified.

Our goal, then, is to find a minimally abstract or least ab-
stracted counterexample- either a concrete counterexample,
or a counterexample with a minimal number of abstracted
functions. Such states are likely to be the most understand-
able to a user, as they most closely resembly an actual exe-
cution of the program.

Contracts To this end, we introduce three functions that we
require on the original contracts: pre returns just the pre-
conditions, post returns just the postconditions, and toExp

converts a contract to a λG expression. Here, we assume
these functions can be implemented for some arbitrary set of
contracts. In ğ 5, we show these functions over LiquidHaskell
refinement types.

418

Lazy Counterfactual Symbolic Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Counterfactual Function Definitions To find abstract
counterexamples, we create assertion functions and counter-

factual functions. Given a function f ≡ λx . e with a contract
c , we define its assertion function as:

f a ≡ λx .let r = f x in assert (toExp(c) x r) in r

We define the counterfactual function of f as:

f̂ ≡ λx . f a x □

(let s = ? : τ in assume (toExp(post(c)) x s) in s)

When symbolic execution reduces f̂ , it binds the arguments
to lambdas as usual. Then, due to the counterfactual branch,
it splits into two symbolic states. We will refer to these as
the left and right states, corresponding to the left and right
of the counterfactual choice. The left state corresponds to
normal execution, with an assertion that both ensures that
the function’s preconditions are met, and that the function
returns values that satisfy its postcondition. In the right state,
we introduce a new symbolic variable, s , that is assumed to
satisfy the function’s postcondition (as defined by the con-
tract c), but which otherwise makes no use of f ’s definition.
Therefore, s can take on any value that f would be allowed
to return by its postcondition. This allows us to find abstract
counterexamples when f ’s implementation is correct, but
its contract does not describe its behavior precisely enough
to verify a caller. The right state does not check that its argu-
ments satisfy its preconditions, because if there is a violation
of a precondition, it will also occur in the left case.
We can find (abstract) counterexamples for a function

f of arity n, with contract c . To do so, we define another
special copy of f , called fdet . The function fdet is f , but
with each occurence of a callee function д replaced by д̂.
This matches how modular verifiers use the implementation
of their client functions, by using the definition of f , but
only the specifications for library functions when verifying
that f meets its specification.
Then we perform symbolic execution starting from an

initial state defined as follows:

assume (toExp(pre(c) s)) in ((fdet)
a s)

s are symbolic inputs that ensure that any counterexample
we find use inputs satisfying f ’s precondition.

In order to find minimally abstract counterexamples, we
maintain a counter of the number of right paths selected for
each states. Then, we filter the found states, and present only
those which require the fewest abstracted functions.

4.1 Search Strategy

Symbolic execution, as described in this paper, is an un-
bounded and therefore incomplete search technique. When
searching for counterexamples, we aim to minimize the num-
ber of abstracted functions, but we can almost never actually
prove we succeeded (and an incompletely minimized coun-
terexample may still be useful to a user.) Here, we describe

two strategies we employ to try to minimize time spent
searching, while still finding useful, and close to minimal,
counterexamples.

Abstract Counterexample Filtering Presenting only min-
imally abstract counterexamples allows us to prune during
symbolic execution. If we find an assertion violation with n
abstracted functions, we can drop any state- including states
which have not finished execution- in which we abstracted
n + 1 or more functions.

Search Deepening The reductions rules in ğ 3.3 implicity
create a (often infinite) tree of states. The order we search
the branches of this tree, and how deep we search, is an
important consideration to find counterexamples efficiently.

We search in a depth first manner, to some maximal depth.
If we have explored all branches, and not found a coun-
terexample, we increase the maximal depth and continue
searching. Every time we find a counterexample that is better
(has less abstracted functions) than our current best coun-
terexample, but that is deeper in the tree, we also increase
the maximal depth.
Thus, this strategy allows searching to continue if better

counterexamples are being found by searching deeper in
the tree. However, we avoid fruitlessly searching too many
states, if they are not producing promising results.
The gradual increase in the maximal depth ensures we

are evaluating a variety of states and branches, preventing
us from spending too much time on branches that will not
yield a counterexample. It often enables us to find a close-to-
minimal counterexample fairly quickly, allowing us to prune
all states with a greater number of abstracted functions.

5 Refinement Type Counterexamples

Now that we have described a general technique for counter-
factual symbolic execution, we turn our attention to leverag-
ing it to generate counterexamples to refinement types, as
shown in ğ 2.4 and ğ 2.5.

Refinement Types We support the language of refinement
types shown in Figure 9. This subset includes operations
on numeric types, measures (e.g. size from ğ 2.5), and re-
finements on polymorphic arguments. In the refinement
language, {v : b [τ1 . . . τk] | r } represents the base type b
refined by the predicate r . The [τ1 . . . τk] are type arguments
to the base type, which may themselves be further refined.
Thev is an inner bound name, allowing reference to the value
of the type in r and τ1 . . . τk . The x : τ1 → τ2 is a function
of type τ1 to τ2. The x is a outer bound name to refer to the
value of τ1, allowing it to be referenced in refinements in τ2.

To use counterfactual symbolic execution for refinement
types, we need only convert refinement type specifications
to assume and assert expressions. That is, we need only im-
plement the three functions, pre, post, and toExp, described
in ğ 4, that describe the contracts of each function.

419

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

τ ::= Types

| {v : b [τ] | r } refinement
| x : τ → τ function

b ::= Basic Types

| Int integer
| Bool boolean
| A algebraic data type

r ::= Refinements

| r == r equality
| r < r inequality
| r ∧ r conjunction
| ¬r negation
| x variable
| m r measure application
| n integer value
| r ⊕ r integer operation
| true true
| false false

m ::= m Measures

Figure 9. λD types

pre(τ) =

x1 : τ1 → τ = x1 : τ1 → (x2 : τ2 → τ3)

pre(x2 : τ2 → τ3)

τ1 τ = x : τ1 → τ2

post(τ) =

x1 : bt(τ1)→ post(τ2) τ = x : τ1 → τ2

{v : b [τ1 . . . τk] | r } τ = {v : b [τ1 . . . τk] | r }

bt(τ) =

{v : b [bt(τ1) . . . τ = {v : b [τ1 . . . τk] | r }

bt(τk)] | true}

τ otherwise

Figure 10. λD precondition and postcondition

Pre and Post Figure 10 shows pre and post. pre walks over
the function and drops the return type. post keeps the ar-
gument bindings, but sets all refinements, except the return
type’s refinement, to True. Keeping the bindings is impor-
tant, as they may be used in the return type’s refinement.

Converting Refinements to Contracts Refinement types
are converted to contracts, i.e. asserts and assumes, on the
inputs and output of a function. toExp, shown in Figure 11,
translates LiquidHaskell refinement types into predicates in
λG . This function has many subparts:

• toExpλ creates lambda bindings, giving us names to
refer to both the inputs and outputs of the funciton.
• toExpb and toExpr translate each individual refine-
ment on a type into a λG predicate on a value.
• toExpτ walks over the spine of a LiquidHaskell func-
tion type, to apply toExpb to each argument.

Polymorphic Data Types LiquidHaskell allows checking
refinements on polymorphic type variables. For example, we
may refine a polymorphic list [a] to contain only positive in-
tegers, by writing [{x : Int | 0 < x }]. Thus, we require a way
to translate LiquidHaskell polymorphic type refinements,
into predicates on expressions in λG . To do this for a type
constructor τ , with type variable a, a higher order function
pτ is automatically created. The function takes an expression
of type τ a, and a predicate of function type a → Bool. It
walks over the structure of the type, conjoining the appli-
cation of the predicate to each occurence of a. We can then
apply pτ to a predicate expression and an expression of type
τ , to assume or assert that those predicate expressions hold
on all type variables in p. For example, on a list, we have:

pList p [] = True

pList p (x : xs) = (p x) ∧ (pList p xs)

and we translate [{x : Int | 0 < x }] to pList (λx . 0 < x).

6 Implementation and Evaluation

We next describe the implementation of lazy, counterfactual
symbolic execution, and present an evaluation that demon-
strates the effectiveness of our method for localizing refine-
ment type errors.

6.1 Implementation

We have implemented lazy symbolic execution for the
Haskell language in a tool named G2. It is open source, and
available at https://github.com/BillHallahan/G2. We use the
GHCAPI to parse Haskell programs, and Z3 [8] and CVC4 [1]
as SMT solving backends. G2 supports a large Haskell98-like
subset of the code compiled by GHC, which also includes
features not detailed in ğ 3.1 such as polymorphism. G2 uses
a custom version of Haskell’s Base library and Prelude [26].
For a range of modules, functions, and datatypes, G2 can
use this custom standard library to symbolically execute
programs written with the standard Base and Prelude.

6.2 Quantitative Evaluation

The goal of our evaluation is twofold. Q1 Does symbolic
execution find counterexamples that explain refinement type
errors? Q2 Do the abstract counterexamples accurately pin-
point the functions whose specifications are too weak to
permit type checking?
Our empirical evaluation answers these questions posi-

tively. We use G2 to generate counterexamples for refine-
ment type errors on a corpus of programswritten by students
using LiquidHaskell for a homework assignment in CSE 230,
a graduate level programming languages class, at the Univer-
sity of California, San Diego (IRB #140608). The assignment
contained a variety of exercises. For some, the students had
to write code that implemented a function, and matched a
given refinement type. For others, the students were asked
to write refinement types for prewritten functions. In total,

420

Lazy Counterfactual Symbolic Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

toExp(τ) = toExpλ (τ ,τ)

toExpλ (τ ,τa) =

λx . toExpλ (τ2,τa) τ = x : τ1 → τ2

λx F . toExpτ (x
F
,τa) for fresh x

F τ = {v1 : b [. . .] | r }

toExpτ (x
F
,τ) =

toExpb (x ,τ1) ∧ toExpτ (x
F
,τ2) τ = x : τ1 → τ2

toExpb (x
F
,τ) τ = {v : b [τ1 . . . τk] | r }

toExpb (x ,τ) =

(

λv . pb (v, toExpτ (x1,τ1), . . . , toExpτ (xk ,τk)) ∧ toExpr (r)
)

x τ = {v : b [τ1 . . . τk] | r }

for fresh x1 . . . xk

True τ = x : τ1 → τ2

toExpr (r) =

toExpr (r1) == toExpr (r2) r = r1 == r2

toExpr (r1) < toExpr (r2) r = r1 < r2

toExpr (r1) ∧ toExpr (r2) r = r1 ∧ r2

.

Figure 11. λD to λG translation

each students assignment was roughly 150 to 200 lines of
code.

Corpus The corpus contains, in total, 10,349 incorrect re-
finement types. The data was collected by logging the stu-
dent’s work every time a student typechecked their code
with LiquidHaskell. Consequently, the data set comprises
traces of files, giving us access to the code at different stages
of progression Ð both the incorrect programs and the correct
one that finally type checked.

Preprocessing The corpus was collected from a class run
in 2015. LiquidHaskell’s syntax has changed since then, ren-
dering some of the files non-parsable. Altogether, on the
student written data set G2 can be applied to 93.6% of the
files. From those, we excluded 2136 functions because they
were only stubs, which immediately called error. Finding
counterexamples for these functions is trivial, because any
input would be a counterexample. This left us with a total of
7550 functions to evaluate G2 on.

Search Strategy Our search deepening strategy (ğ 4.1) takes
two parameters: an amount s to increase the search depth, if
no counterexample is found, and an amount c to increase the
search depth, when a better counterexample is found. Based
on our experience with G2 we selected s = 300 and c = 500
as values that appeared to give reasonable results. G2 was
given a maximum of 2 minutes to find counterexamples for
each function.

Results Figure 12 summarizes the results of our evaluation
on the 7550 functions, drawn from actual code written by
students. It demonstrates that G2 finds counterexamples
for the vast majority of the LiquidHaskell errors. In total,
we found counterexamples for 7379, or 97.7%, of the errors.
We found concrete counterexamples for 4354, or 57.6%, of
the errors, and found abstract counterexamples for 3025, or

40.1%, of the errors. While G2 has an average runtime of only
17.6 seconds, the median running time is even lower ś 7.9
seconds. This shows that G2 is a practical and efficient tool
to help debug LiquidHaskell refinement type errors, giving
a very positive answer to Q1.

G2 failed to find a counterexample only 2.3% of the time.
1.5% of our failures come from timeouts, while the remaining
0.7% is accounted for by errors in G2, which mostly relate to
unimplemented edge cases in LiquidHaskell specifications.

Correctness of Abstract Counterexamples Our bench-
marks come from traces of programmers iteratively invoking
LiquidHaskell to verify some properties. Thus, we determine
whether G2’s abstract counterexamples correctly localize the
imprecise specification by comparing each łbadž file ś that
was rejected by LiquidHaskell, for which G2 found an ab-
stract counterexample ś with the first łfixedž file along the
user’s trace that was accepted by LiquidHaskell. We say that
an abstract counterexample correctly localizes the error if the
counterexample blames a call to some function f such that
in the łfixedž version (a) the user specifies a different type for
f , or (b) the user replaces f with a different function with
a stronger type, or (c) LiquidHaskell infers a different type
for f e.g. because it is used differently in the code. We say
an abstract counterexample is spurious otherwise.

Evaluating CorrectnessOf the 3025 counterexamples, after
discarding 1041 łbadž files that had no łfixedž version (as
some students did not finish the assignments) we were left
with 1984 abstract counterexamples. We categorized these
counterexamples via a combination of scripts and manual
inspection as one of (a), (b), (c) or spurious. We find that in
1747 (88.1%) cases the user ends up specifying a different type
(a), in 9 (0.4%) cases the user ends up replacing the function
(b), and in 151 (7.6%) cases the user ends up changing other
code to allow LiquidHaskell to infer the right type needed

421

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

Function Con. Abs. Time Error Avg.
out Time (s)

prop_map 13 523 2 2 8.9

foldr1 607 0 0 2 10.1

kmeans1 0 875 22 0 120.5

prop_concat 877 217 0 5 5.7

replicate 8 7 2 2 17.9

mergeCluster 329 2 0 0 7.2

collapse 250 0 0 5 8.3

prop_zipWith 18 708 13 2 10.5

concat 181 80 53 8 58.3

nearest 80 0 0 6 10.5

prop_replicate 335 125 0 2 5.7

expand 49 74 0 0 8.3

length 16 0 7 0 40.8

zipWith 760 3 4 2 9.2

kmeans 0 18 2 0 120.5

centroid 594 0 0 0 6.4

prop_size 0 224 2 3 6.7

mapReduce 93 137 8 8 12.2

add 3 0 0 2 4.4

concat2 5 1 0 0 10.0

prop_concat2 36 2 0 0 5.9

distance 84 3 0 0 9.5

prop_concat_1 0 6 0 0 6.0

prop_join 0 6 0 0 5.6

Other 16 14 0 7 14.5

Total 4354 3025 115 56 17.6

Figure 12. Evaluation results for errors reported by
LiquidHaskell on student homeworks. Con. is the number
of reported concrete counterexamples. Abs. is the number
of abstract counterexamples reported by G2. Timeout is the
number of times G2 timed out before returning counterexam-
ples. Error is the errors encountered in G2 when generating
counterexamples. Avg. Time is the average amount of time
taken by all runs of G2 reported in the table.

for verification (c). Thus, we conclude that in 96.1% of the
cases, G2’s abstract counterexamples correctly identified the
function whose specification was too weak.

Replicate Function One particularly interesting abstract
counterexample stood out to us. This counterexample was
actually counted as spurious, as it does not fit any of our clas-
sifiers for correct abstract counterexamples, but nonetheless
shows something interesting about the code. Consider:

replicate :: n:Int -> a ->

{ xs:[a] | size xs == n }

replicate 0 x = []

replicate n x = x:replicate n x

replicate is supposed to return a list of the given length,
but due to a mistake in the implementation (the counter is
never decreased) instead returns an infinite list. However,
classical symbolic execution would fail to find a concrete
counterexample, because the computation of size xs == n

would never terminate. However, G2 finds an abstract coun-
terexample for replicate:

replicate 1 0 = [0, 0]

violating its refinement type , if

replicate 1 0 = [0]

If the first recursive call to replicate 1 0 returns [0], the
the outer call to replicate 1 0 returns [0, 0], violating the
refinement type.

Our primary motivation to develop abstract counterexam-
ples was to aid in cases where the specification was insuf-
ficient. Therefore, it was a surprising discovery that it can
also provide output in cases of non-termination.

7 Related Work

Verification Techniques and Debugging An IDE for
Dafny that helps debug genuine and spurious failed veri-
fication conditions is described in [6]. Like our work, it uses
a symbolic execution based approach to find concrete coun-
terexamples. However, for spurious errors, it simply displays
the SMT model, which, unlike abstract counterexamples,
does not pinpoint any specific function whose specification
needs strengthening for verification to succeed.
CORRAL [17ś19] is a reachability solver based on gener-

ating verification conditions. CORRAL introduces the strati-
fied inlining technique, which inlines functions on demand
if verification fails when just using the function contracts.
As opposed to counterfactual counterexamples, stratified
inlining aims to improve the underlying verification, rather
than improve explainability of verification errors. As such,
stratified inlining can be seen as an orthogonal technique
to G2’s counterfactual counterexamples. Stratified inlining
aims to minimize the number of inlined functions, whereas
counterfactual counterxample generation aims to minimize
the amount of abstraction.

Haskell Libraries, Program Analysis, and Testing

Catch [22] and Reach [23] are static analyses for Haskell that
look for specific kinds of errors as opposed to our general
symbolic execution. QuickCheck [7] and SmallCheck [30]
and Target [31] test properties by running Haskell code on
large numbers of random or SMT-generated, concrete inputs.
While either could potentially be used to generate concrete
counterexamples fromLiquidHaskell types, neither produces
abstract (counterfactual) counterexamples.

Haskell Verification Xu’s work on static contract check-
ing [43, 44], relies on a symbolic simplifier, parts of which
resemble our reduction rules (ğ 3.3.) Similarly, Halo [41]
and LiquidHaskell [40] aim to verify properties of Haskell

422

Lazy Counterfactual Symbolic Execution PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

programs. However, in contrast to G2, these tools aim for
verification, as opposed to refutation which is the goal of
our lazy reduction-based symbolic execution. None of them
produce abstract counterexamples when verification fails.

Solver-aided Programming Solver-aided programming is
a paradigm that makes it easier to write code that uses a
constraint solver. As opposed to G2, which focuses on find-
ing assertion violations, solver-aided programming allows
directly manipulating symbolic values in code.
ROSETTE [36, 37] is a general purpose framework that en-

ables solver-aided programming in Racket. Thismakes it easy
to use Racket to formulate search problems over a symbolic
domain. Programs can be written with traditional Racket
code, but ROSETTE introduces symbolic integer and Boolean
values. Unlike G2, ROSETTE does not attempt to find asser-
tion violations in code. Rather, it gives programmers a higher
level interface to constraint solvers, simplifying the writing
of tools that manipulate symbolic values.
SmtEn [38] is a plugin for GHC that allows for high level

constraint solving. A user can call SmtEn’s API to manipu-
late symbolic values. Similarly to ROSETTE, SmtEn gives a
higher level interface to the capabilities of constraint solvers.
It is therefore better suited than G2 for programmers who
want to make use of constraint solving in their programs.
However, SmtEn does not symbolically execute general pur-
pose Haskell code, which makes G2 more usable as an off-
the-shelf debugging aid.

Symbolic Execution for Functional Languages

CutEr [10, 11] is a symbolic execution engine for Er-
lang programs. SCV [24, 35] is a static contract verifier for
Racket based on symbolic execution. Racket and Erlang are
strict languages, and thus neither of the above tools consid-
ers lazy evaluation, which requires a different approach as
demonstrated in (ğ 2). Further, to our knowledge, neither
of the above scales to check inductive properties (e.g. size,
height) of recursive datatypes (e.g. lists, trees). Finally, none
of them produces abstract counterexamples to pinpoint
weak specifications.

Symbolic Execution for Imperative Languages There
are many symbolic execution engines for imperative lan-
guages, including Dart [12] and Cute [32] for C, Symbolic
Pathfinder [25] for Java, Pex [34] for .NET, Sage [13] for x86
Windows applications, and EXE [4] and its sequel Klee [3]
for LLVM. The execution semantics of imperative programs
are quite different from ours, but other techniques (such as
path search strategies) are likely to be applicable to Haskell
symbolic execution.

8 Conclusion

We presented counterfactual symbolic execution for non-
strict languages, and used it to find counterexamples that
illustrate concretely or abstractly why a modular checker
fails to verify a program. Our evaluation on a large corpus of

7550 verification errors from users of LiquidHaskell demon-
strates that we can find counterexamples to 97.7% of errors.
For 57.6% of the errors we find concrete counterexamples,
and for an additional 40.1% of the errors we find abstract
counterexamples, which 96.1% of the time correctly pinpoint
the imprecision that precludes verification. Thus, our results
show that by generalizing the notion of counterexamples via
counterfactual execution, we can quickly, automatically, and
accurately guide the puzzled developer to the part of their
code or specification that they need to fix.

Acknowledgments

We thank the anonymous referees and our shepherd Michael
Greenberg for their feedback on earlier versions of this paper.
This work was supported by the the National Science Foun-
dation under Grant Numbers CCF-1553168, CCF-1302230,
CCF-1422471, CCF-1223850, CCF-1218344, CCF-1763814, and
a generous gift from Microsoft Research.

References
[1] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,

Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli.

2011. CVC4. In Proceedings of the 23rd International Conference on Com-

puter Aided Verification (CAV ’11) (Lecture Notes in Computer Science),

Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer,

171ś177. http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf

Snowbird, Utah.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strich-

man, and Yunshan Zhu. 2003. Bounded model checking. Advances in

Computers 58 (2003), 117ś148. https://doi.org/10.1016/S0065-2458(03)

58003-2

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted and Automatic Generation of High-coverage Tests for Complex

Systems Programs. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation (OSDI’08). USENIX As-

sociation, Berkeley, CA, USA, 209ś224. http://dl.acm.org/citation.

cfm?id=1855741.1855756

[4] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and

Dawson R Engler. 2008. EXE: automatically generating inputs of death.

ACM Transactions on Information and System Security (TISSEC) 12, 2

(2008), 10.

[5] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Soft-

ware Testing: Three Decades Later. Commun. ACM 56, 2 (Feb. 2013),

82ś90. https://doi.org/10.1145/2408776.2408795

[6] Maria Christakis, K Rustan M Leino, Peter Müller, and Valentin

Wüstholz. 2016. Integrated environment for diagnosing verification

errors. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 424ś441.

[7] Koen Claessen and John Hughes. 2011. QuickCheck: a lightweight

tool for random testing of Haskell programs. Acm sigplan notices 46, 4

(2011), 53ś64.

[8] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Hei-

delberg, 337ś340. http://dl.acm.org/citation.cfm?id=1792734.1792766

[9] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R.

Stata. 2002. Extended static checking for Java. In PLDI.

[10] Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos Sagonas.

2015. Concolic Testing for Functional Languages. In Proceedings of the

423

http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/2408776.2408795
http://dl.acm.org/citation.cfm?id=1792734.1792766

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA W. Hallahan, A. Xue, M. Bland, R. Jhala, R. Piskac

17th International Symposium on Principles and Practice of Declarative

Programming (PPDP ’15). ACM, New York, NY, USA, 137ś148. https:

//doi.org/10.1145/2790449.2790519

[11] Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos Sagonas.

2017. Concolic testing for functional languages. Science of Computer

Programming 147 (2017), 109ś134.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: di-

rected automated random testing. In ACM Sigplan Notices, Vol. 40.

ACM, 213ś223.

[13] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE:

whitebox fuzzing for security testing. Commun. ACM 55, 3 (2012),

40ś44.

[14] Sarfraz Khurshid, Corina S Păsăreanu, and Willem Visser. 2003. Gen-

eralized symbolic execution for model checking and testing. In Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 553ś568.

[15] James C. King. 1976. Symbolic Execution and Program Testing. Com-

mun. ACM 19, 7 (July 1976), 385ś394. https://doi.org/10.1145/360248.

360252

[16] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. 2012. Constraints

as control. In Proceedings of the 39th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL 2012, Philadelphia,

Pennsylvania, USA, January 22-28, 2012. 151ś164. https://doi.org/10.

1145/2103656.2103675

[17] Akash Lal and Shaz Qadeer. 2014. A program transformation for faster

goal-directed search. In Proceedings of the 14th Conference on Formal

Methods in Computer-Aided Design. FMCAD Inc, 147ś154.

[18] Akash Lal and Shaz Qadeer. 2015. DAG inlining: a decision procedure

for reachability-modulo-theories in hierarchical programs. In ACM

SIGPLAN Notices, Vol. 50. ACM, 280ś290.

[19] Akash Lal, Shaz Qadeer, and Shuvendu K Lahiri. 2012. A solver for

reachability modulo theories. In International Conference on Computer

Aided Verification. Springer, 427ś443.

[20] K. R. M. Leino. 2010. Dafny: An Automatic Program Verifier for Func-

tional Correctness. In LPAR.

[21] Simon Marlow and Simon Peyton Jones. 2004. Making a fast curry:

push/enter vs. eval/apply for higher-order languages. InACM SIGPLAN

Notices, Vol. 39. ACM, 4ś15.

[22] Neil Mitchell and Colin Runciman. 2008. Not All Patterns, but Enough:

An Automatic Verifier for Partial but Sufficient Pattern Matching. In

Proceedings of the First ACM SIGPLAN Symposium on Haskell (Haskell

’08). ACM, New York, NY, USA, 49ś60. https://doi.org/10.1145/1411286.

1411293

[23] M. Naylor and C. Runciman. 2007. Finding Inputs that Reach a Target

Expression. In Seventh IEEE International Working Conference on Source

Code Analysis and Manipulation (SCAM 2007). 133ś142. https://doi.

org/10.1109/SCAM.2007.30

[24] Phúc C Nguyễn and David Van Horn. 2015. Relatively complete coun-

terexamples for higher-order programs. ACM SIGPLAN Notices 50, 6

(2015), 446ś456.

[25] Corina S Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys,

Peter Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: inte-

grating symbolic execution with model checking for Java bytecode

analysis. Automated Software Engineering 20, 3 (2013), 391ś425.

[26] Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised

report. Cambridge University Press.

[27] SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip

Wadler. 1993. The Glasgow Haskell compiler: a technical overview. In

Proc. UK Joint Framework for Information Technology (JFIT) Technical

Conference, Vol. 93.

[28] Simon L Peyton Jones. 1992. Implementing lazy functional languages

on stock hardware: the Spineless Tagless G-machine. Journal of func-

tional programming 2, 2 (1992), 127ś202.
[29] Simon L Peyton Jones. 1996. Compiling Haskell by program trans-

formation: A report from the trenches. In European Symposium on

Programming. Springer, 18ś44.

[30] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Small-

check and lazy smallcheck: automatic exhaustive testing for small

values. In Acm sigplan notices, Vol. 44. ACM, 37ś48.

[31] Eric L Seidel, Niki Vazou, and Ranjit Jhala. 2015. Type targeted test-

ing. In European Symposium on Programming Languages and Systems.

Springer, 812ś836.

[32] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Con-

colic Unit Testing Engine for C. In Proceedings of the 10th Euro-

pean Software Engineering Conference Held Jointly with 13th ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering (ESEC/FSE-13). ACM, New York, NY, USA, 263ś272. https:

//doi.org/10.1145/1081706.1081750

[33] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,

K. Bhargavan, C. Fournet, P. Y. Strub, M. Kohlweiss, J. K. Zinzindohoue,

and S. Zanella-Béguelin. 2016. Dependent Types and Multi-Monadic

Effects in F*. In POPL.

[34] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box

Test Generation for .NET. In Tests and Proofs, Second International

Conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings. 134ś

153. https://doi.org/10.1007/978-3-540-79124-9_10

[35] Sam Tobin-Hochstadt and David Van Horn. 2012. Higher-order sym-

bolic execution via contracts. In ACM SIGPLAN Notices, Vol. 47. ACM,

537ś554.

[36] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided lan-

guages with rosette. In Proceedings of the 2013 ACM international sym-

posium on New ideas, new paradigms, and reflections on programming

& software. ACM, 135ś152.

[37] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic

virtual machine for solver-aided host languages. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI

’14, Edinburgh, United Kingdom - June 09 - 11, 2014. 530ś541. https:

//doi.org/10.1145/2594291.2594340

[38] Richard Uhler and Nirav Dave. 2014. Smten with Satisfiability-based

Search. SIGPLAN Not. 49, 10 (Oct. 2014), 157ś176. https://doi.org/10.

1145/2714064.2660208

[39] Niki Vazou, Eric L Seidel, and Ranjit Jhala. 2014. Liquidhaskell: Ex-

perience with refinement types in the real world. In ACM SIGPLAN

Notices, Vol. 49. ACM, 39ś51.

[40] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2014. Refinement types for Haskell. In ACM SIGPLAN

Notices, Vol. 49. ACM, 269ś282.

[41] Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan

Rosén. 2013. HALO: Haskell to Logic Through Denotational Semantics.

SIGPLAN Not. 48, 1 (Jan. 2013), 431ś442. https://doi.org/10.1145/

2480359.2429121

[42] H. Xi and F. Pfenning. 1999. Dependent Types in Practical Program-

ming. In POPL.

[43] Dana N Xu. 2006. Extended static checking for Haskell. In Proceedings

of the 2006 ACM SIGPLAN workshop on Haskell. ACM, 48ś59.

[44] Dana N Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static

contract checking for Haskell. Vol. 44. ACM.

424

https://doi.org/10.1145/2790449.2790519
https://doi.org/10.1145/2790449.2790519
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2103656.2103675
https://doi.org/10.1145/2103656.2103675
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1145/1411286.1411293
https://doi.org/10.1109/SCAM.2007.30
https://doi.org/10.1109/SCAM.2007.30
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2714064.2660208
https://doi.org/10.1145/2714064.2660208
https://doi.org/10.1145/2480359.2429121
https://doi.org/10.1145/2480359.2429121

	Abstract
	1 Introduction
	2 Overview
	2.1 Goal: Symbolic Execution
	2.2 Challenge: Lazy Evaluation
	2.3 Solution: Lazy Symbolic Execution
	2.4 Refinement Type Counterexamples
	2.5 Localizing Imprecise Refinement Types

	3 Lazy Symbolic Execution
	3.1 Syntax
	3.2 Symbolic States
	3.3 Symbolic Execution Transitions

	4 Counterfactual Symbolic Execution
	4.1 Search Strategy

	5 Refinement Type Counterexamples
	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Quantitative Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

