Checking Equivalence in a Non-strict Language

JOHN C. KOLESAR, Yale University, USA
RUZICA PISKAC, Yale University, USA
WILLIAM T. HALLAHAN, Binghamton University, USA

Program equivalence checking is the task of confirming that two programs have the same behavior on
corresponding inputs. We develop a calculus based on symbolic execution and coinduction to check the
equivalence of programs in a non-strict functional language. Additionally, we show that our calculus can
be used to derive counterexamples for pairs of inequivalent programs, including counterexamples that arise
from non-termination. We describe a fully automated approach for finding both equivalence proofs and
counterexamples. Our implementation, NEBULA, proves equivalences of programs written in Haskell. We
demonstrate NEBULA’s practical effectiveness at both proving equivalence and producing counterexamples
automatically by applying NEBULA to existing benchmark properties.

CCS Concepts: » Theory of computation — Automated reasoning; Program verification.
Additional Key Words and Phrases: coinduction, non-strictness, equivalence, symbolic execution, Haskell

ACM Reference Format:
John C. Kolesar, Ruzica Piskac, and William T. Hallahan. 2022. Checking Equivalence in a Non-strict Language.
Proc. ACM Program. Lang. 6, OOPSLAZ2, Article 177 (October 2022), 42 pages. https://doi.org/10.1145/3563340

1 INTRODUCTION

Equivalence checking is the task of verifying that two programs behave identically when given
identical inputs. Equivalence checking is useful for a number of tasks, such as ensuring compiler
optimizations’ correctness [Benton 2004; Peyton Jones et al. 2001; Peyton Jones 1996]. Optimizing
compilers aim to improve the performance of code with simplifying transformations. Critically,
these transformations must preserve the meaning of the code, or they could lead to incorrect
behavior that violates the language specification. Equivalence checking has other uses as well, such
as ensuring the correctness of refactored code [Schuts et al. 2016], program synthesis [Campbell
etal. 2021; Schkufza et al. 2013; Smith and Albarghouthi 2019], and automatic evaluation of students’
submissions for programming assignments [Milovancevic et al. 2021].

Non-strict languages allow for the use of conceptually infinite data strutures. Such structures
have a number of uses, from memoization [Elliot 2010] to trees representing all moves in an infinite
game. Many seemingly obvious equivalences do not hold when we allow infinite data structures.

Consider, for instance, subtraction for natural numbers:
Z - _ =7

data Nat = S Nat | Z X -7 = X
(S x) - (Sy)=x-y

Authors’ addresses: John C. Kolesar, Computer Science, Yale University, USA, johnkolesar@yale.edu; Ruzica Piskac,
Computer Science, Yale University, USA, ruzica.piskac@yale.edu; William T. Hallahan, Computer Science, Binghamton
University, USA, whallahan@binghamton.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART177

https://doi.org/10.1145/3563340

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 177. Publication date: October 2022.

https://doi.org/10.1145/3563340
https://doi.org/10.1145/3563340

177:2 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

One might expect m - m to reduce to Z for any natural number m, but this equivalence does not
always hold. With non-strictness, one can define a conceptually infinite Nat as inf = S inf, and
the evaluation of inf - inf does not terminate.

We describe the first—to the best of our knowledge—automated equivalence checker for pro-
grams in a non-strict functional language. Existing approaches for fully automated equivalence
checking [Claessen et al. 2012; Dixon and Fleuriot 2003; Farina et al. 2019; Sonnex et al. 2012]
assume total and finite input values. In contrast, our approach checks that two programs display
the same behavior even when applied to inputs that include infinite or diverging sub-expressions.

Our equivalence checking approach is based on symbolic execution and the principle of coinduc-
tion. Symbolic execution is a method for exploring the execution paths of a program exhaustively.
Coinduction is a proof technique for deriving conclusions about infinite data structures from cyclic
patterns in their behavior. We define a notion of equivalence for a non-strict functional language
that incorporates non-total expressions and the possibility of expressions being equivalent by both
failing to terminate. We develop a calculus for coinduction and symbolic execution capable of prov-
ing equivalence of programs in the non-strict functional language. This calculus also incorporates
a sound approach for using auxiliary equivalence lemmas that allow a sub-expression e; to be
rewritten as an equivalent expression e;. We show that, while such lemma applications are actually
unsound in general, they can be used soundly under certain conditions.

In addition to proving equivalence, our approach finds counterexamples that demonstrate the
inequivalence of two programs. Our approach can detect not only inequivalences that arise from two
programs terminating with different values, but also inequivalences that arise from one program
terminating and the other failing to terminate when given the same inputs.

We show that the combination of symbolic execution and coinduction-based tactics allows for
automated equivalence checking and inequivalence detection. Our algorithm switches between
symbolic execution and coinduction automatically to find proofs. Further, we describe an extension
of this algorithm that generates and proves helper lemmas automatically.

We implement our approach in NEBULA (Non-strict Equivalence By Using Lemmas and Approxi-
mation), a practical tool targeting Haskell code. NEBULA builds on the Haskell symbolic execution
engine G2 [Hallahan et al. 2019], and it uses coinduction for automated equivalence checking of
higher-order functional programs. Our evaluation demonstrates that NEBULA is capable of both
verifying true properties and finding counterexamples for false properties. In particular, we run
NEBULA on the Zeno test suite [Sonnex et al. 2012]. As this test suite was developed assuming
strict semantics, most of the properties do not hold with non-strict semantics. We verify 92% of
the properties that are still true in a non-strict context (i.e. 26% of the entire suite, where 28% of
the suite is still true), and we find counterexamples for every property that no longer holds (72%
of the suite.) Furthermore, we evaluate NEBULA’s ability to identify counterexamples involving
non-termination and find that our tool can generate such counterexamples for 73% of the applicable
benchmarks. We describe an approach for accommodating total and finite inputs in NEBULA and
evaluate NEBULA on altered versions of the Zeno properties that hold even under non-strictness.

In summary, our contributions are the following:

1. Equivalence Checking Calculus Section 3 provides an overview of our formalization of sym-
bolic execution. In Section 4, we develop a calculus combining symbolic execution and coinduction
to prove equivalence of non-strict functional programs, and prove the calculus sound.

2. Producing Counterexamples In Section 5, we extend the calculus to produce counterexamples,
including counterexamples that demonstrate inequivalence due to differences in termination.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.

Checking Equivalence in a Non-strict Language 177:3

prop33_lhs a b = min a b === a -- full === definition not shown
prop33_rhs a b = a <= b (S x) === (S y) = x ===y

min Z y =Z z <= _ = True

min (S x) Z =Z _ <= Z = False

min (S x) (S y) =S (min x y) (S x) <= (Sy) =x <=y

Fig. 1. Zeno Theorem 33

‘minab:::a‘ ‘a <:b‘

a=12

P5[min (sa)b==5a|[sa <=b]
| — b=1

P4 [True | [True] ps [1] 1] - PTe
=z
prz=sa][sa <:Z‘P9‘min (sa) by ==sa'|[sa < (sb)]

P10[S (mina' b') =5 a’ wa‘ =

Fig. 2. Overview of how NEBULA proves prop33. Gray arrows denote symbolic execution, and blue arrows
denote coinduction.

ps [Fat] [Fatse]

3. Automation Techniques Section 6 introduces an algorithm that searches for both equivalence
proofs and counterexamples automatically, guided by symbolic execution and coinduction. Our
algorithm also discovers and proves helper lemmas automatically to aid in the verification process.

4. Implementation and Evaluation Finally, in Section 7, we discuss our implementation, NEBULA,
that checks equivalence of Haskell expressions. We demonstrate our technique’s effectiveness at
both proving equivalences and producing counterexamples on benchmarks adapted from existing
sources.

For reasons of space, proofs are deferred to the Appendix, available at https://johnckolesar.github.
io/files/checking-equivalence.pdf.

2 MOTIVATING EXAMPLES

We present three examples to show how NEBULA proves properties and finds counterexamples.

Example 2.1. Our first example is the property prop33 taken from the Zeno evaluation suite [Sonnex
et al. 2012], which is a Haskell translation of the IsaPlanner evaluation suite [Johansson et al. 2010].
The example is given in Figure 1. Consider the functions prop33_lhs and prop33_rhs: prop33_lhs
finds the minimum of two numbers a and b, and returns whether that minimum value is equal
to a, while prop33_rhs uses <= to check directly whether a is less than or equal to b. NEBULA can
prove the equivalence of prop33_lhs and prop33_rhs automatically. The equivalence means that
evaluating prop33_lhs and prop33_rhs on any inputs a and b, including inputs that are infinite or
non-total, will produce the same output.

Figure 2 depicts the proof structure that NEBULA uses to prove the equivalence of prop33_lhs and
prop33_rhs. To simplify the presentation, we first explain how the proof obligations are discharged,
and then we discuss how the proof is actually derived. In the proof tree, each step P; consists of
two expressions that need to be proven equivalent.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 177. Publication date: October 2022.

https://johnckolesar.github.io/files/checking-equivalence.pdf
https://johnckolesar.github.io/files/checking-equivalence.pdf

177:4 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

We start with P1, representing the two initial expressions, min a b === aand a <= b. Note that a
and b are symbolic variables: it is known that they are of type Nat, but their exact values are unknown.
We use symbolic execution to evaluate these expressions. Evaluating === requires evaluating min a b
first, which, in turn, requires knowing the value of a. To address these requirements, we need to
consider all the values that a can take, so we split into multiple branches. On each branch, we
assign a different value to a. In P3 we concretize a to Z, in P5 we concretize ato S a', where a' isa
fresh symbolic variable, and in P2, we concretize a to L, a special value representing the possibility
that a either produces an error or does not terminate when evaluated. Each branch symbolically
executes a <= b with its concretization of a. Step P2 leads to the expression L <= b evaluating to
L. We conclude trivially that the expressions in P2 are equivalent, due to their syntactic equality. In
the case of P3, we have the states Z === Z and Z <= b. Symbolic execution will reduce both states
to True, as shown in P4, allowing us again to conclude that the expressions are equivalent.

Step P5 is a more interesting case: we must show that min (S a') b === S a' is equivalent to
S a' <= b. We need to consider all the values that b can take, and so b is concretized to L in P6, to
Zin P7,and to S b' in P9. We focus on P9, as P6 and P7 proceed similarly to P2 and P3. Running
further evaluations on both expressions in P9 results in step P10. One final symbolic execution step

on the left-hand side reduces S (min a' b') === S a' to the expression in S11,min a' b' === a'.
Notice the similarity between the states we have derived (min a' b' === a' anda' <= b') and
the states from the start (nin a b === aanda <= b.) Apart from the names of the symbolic variables,

the states are identical. This correspondence allows us to apply coinduction to discharge the states.
The original left-hand state aligns with the current left-hand state, and the original right-hand
state aligns with the current right-hand state. The variables a and b take the places of a' and b,
respectively. We have reached a cycle, and that cycle is evidence of the two sides’ equivalence in
the situation where a and b are both successors of other natural numbers. This concludes the proof,
since all the proof obligations have been discharged.

Proof Derivation To find this proof automatically, NEBULA switches between applying symbolic
execution to reduce expressions and looking for opportunities to apply coinduction. Symbolic
execution stops at termination points. In particular, every function application is a termination
point. We attempt to apply coinduction whenever symbolic execution reaches a termination point.
Of course, states need to be in a suitable form for coinduction to apply. In the proof above, the
right-hand side of P10, a' <= b', is in the correct form for coinduction with the initial state pair.
However, the left-hand side of P10 needs an additional reduction step for coinduction to apply.
Naturally, there is a question: how did NEBULA know to reduce the left side, but not the right side?
The answer is that NEBULA, in fact, continues to apply further symbolic execution to both sides. In
Figure 2 we presented only relevant steps in the proof, and we left out the further reductions of the
right-hand side for simplicity. NEBULA maintains a history of all states on both sides. When trying
to apply coinduction, it holds the current left state steady and searches through all corresponding
right states (and vice versa) in an effort to form a pair that will allow coinduction to succeed.

Example 2.2. Next, we consider the formula prop@1 from the Zeno evaluation suite [Sonnex et al.
2012]. In Figure 3 we define prop@1_lhs and prop@1_rhs whose equivalence we want to check. The
take function takes a natural number n and a list as input and returns the first n elements of the
list. The drop function also takes a natural number n and a list as input, but it returns all of the
elements of the list except the first n. The ++ operator represents list concatenation.

For prop@1 to be valid, the natural number n needs to be total. If it is not, NEBULA finds a
counterexample, with n as L and xs as Z:[]. The expression take L (Z:[]) simplifies to L, and
the expression L ++ drop L (Z:[1) also simplifies to L because of its first argument. At the same
time, the right-hand side is Z:[], which is a fully-defined expression.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.

Checking Equivalence in a Non-strict Language 177:5

prop@1_lhs n xs = take n xs ++ drop n xs
prop@1_rhs n xs = xs

take Zz _ = []
data [a] = [1 | a : [al take _ [] = []

take (S x) (y:ys)

y : (take x ys)

(++) :: [al -> [a]l -> [a]

[1 ++ ys = ys drop Z xs = xs

(x:Xxs) ++ ys = x : (xs ++ ys) drop _ [1 = []
drop (S x) (_:xs)

drop x xs

Fig. 3. Zeno Theorem 1

‘take n xs ++ drop n xs
n==2

take (S n') xs

P2 | take Z xs ++ drop Z xs L]
++ drop (S n') xs

P3 [xs] [xs] oo T
PS xs =[]

Ps‘take (S n') (x:xs') ++ drop (S n') (x:xs’)T‘x:xs'

P4

Xs = x:xs'

take (S n') [] -
]

++ drop (S n') [] l
v (0]

P13‘drop (Sn') (x:xs')‘ ‘drop n' xs' ‘

P9‘(x:take n' xs') ++ drop (S n') (x:xs') ‘ﬂx:xs'

Plo‘x:(take n' xs' ++ drop (S n') (x:xs')) ‘ﬂx:xs'

Flz‘take n' xs' ++ drop (S n') (x:xs')‘ E P11 n El
take n' xs' ++ drop n' xs' ‘il

P14‘drop n' xs' ‘ ‘drop n' xs' ‘

Fig. 4. Overview of how NEBULA proves prop@1. Gray arrows denote symbolic execution, blue arrows denote
coinduction, and orange dashed arrows denote lemma generation or usage.

If the user already knows that certain inputs must be total, then our tool allows the user to mark
them as total. NEBULA takes these total inputs’ names as command line arguments.

We now discuss the proof steps that NEBULA uses to prove the validity of prop@1 under the
assumption that n is total. The proof structure is given in Figure 4.

Steps P1-P9 are similar to those taken in the previous example, so we focus on P10. Both sides
of P10 are applications of the list constructor :, so they cannot undergo any more non-strict
evaluation. We check equivalence of the expressions in P10 by checking equivalence of both the
head and the tail. This results in two new steps: P11 checks that the list heads are equivalent (and
can be discharged trivially by syntactic equality), while P12 checks that the tails are equivalent.
Discharging P12 requires proving that take n' xs' ++ drop (S n') (x:xs') is equivalent to xs'.

It might look tempting to apply coinduction between P12 and P1. Unfortunately, this does not
work. In the call to take, n' and xs' in P12 take the place of n and xs from P1, but in the call to drop,
we have S n' and x:xs' in P12 in place of n and xs in P1. No consistent mapping can be formed
between the two state pairs, so we cannot apply coinduction to P12 and P1.

To circumvent the problem, we attempt to prove a lemma based on sub-expressions of P12 and
P1. Specifically, we automatically derive a potential lemma stating that drop (S n') (x:xs') is
equivalent to drop n' xs'. We form the expression drop n' xs' by taking the sub-expression in P1

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 177. Publication date: October 2022.

177:6 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

e = Expressions
| x variable
| s symbolic variable
| Ax.e lambda
| D data constructor
| ee application
| caseeof {d} case
| LL bottom
a == DX—oe Alternatives

Fig. 5. The language considered by NEBULA

that should align with drop (S n') (x:xs') in P12 and then applying variable substitutions based
on the correspondence that holds for the rest of the expression (i.e. for the applications of take).
This potential lemma appears as P13 in the diagram.

Proving the lemma in P13 is straightforward. Using the lemma, NEBULA now rewrites the ex-
pression take n' xs' ++ drop (S n') (x:xs') as take n' xs' ++ drop n' xs', as shown in P15.
Finally, this proof obligation can be discharged by applying coinduction with P1.

Example 2.3. Our last example, also from the Zeno suite [Sonnex et al. 2012], illustrates how NEBULA
finds counterexamples. Consider Zeno theorem 10, which asserts the equivalence of m - mand z.
This is true under strict semantics but not under non-strict semantics, even when m is total. When
run on m - mand Z, NEBULA finds a counterexample exposing this inequivalence. NEBULA starts
by applying symbolic execution to m - m. Applying symbolic execution to Z is not possible, as it
is already fully reduced. Evaluating m - m requires concretizing m. On the branch wherem = S m',
NEBULA will reduce S m' - S m' tom' - m'.

So far, this reduction is similar to the process seen in previous examples, and one might expect
to apply coinduction between m - mand m' - m'. However, coinduction cannot be applied here
because the other expression, 7, is already fully reduced (the reason for this restriction on the use of
coinduction will be explained in Section 4.2.) On the contrary, we have found a cycle counterexample.
The new expression m' - m' is as general as the original expression m - m. This means that we
can follow the same reduction steps that m - m took to reduce tom' - m' over again. m' - m' can
reduce tom'' - m'', and the process could repeat forever, resulting in non-termination. On the
other hand, 7 has already terminated. Mapping m' - m' tom - mrequires replacing m' with m, and,
in the statem' - m', we have concretized mas S m'. Thus, we can conclude that lettingm' = min
m = S m' will lead to non-termination, and we obtain the input counterexample m = S m.

Note that the direction of the correspondence between the current and previous state to form a
cycle counterexample is the reverse of that for a proof by coinduction. For coinduction, we show
that the past state pair is at least as general as the current state pair, so that any reduction steps that
can be applied to the current state pair can also be applied to the past state pair. This means that, if
the past state pair cannot be reduced to inequivalent expressions, neither can the current state pair.
In contrast, for a cycle counterexample, we show that the current state is at least as general as the
past state, so that the current state can continue reduction in the same way as the past state.

3 SYMBOLIC EXECUTION

Symbolic execution is a program analysis technique that runs code with symbolic variables in
place of concrete values. Here we describe symbolic execution for a non-strict functional language,
which will both allow us to search for counterexamples to proposed equivalences and act as

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.

Checking Equivalence in a Non-strict Language 177:7

a guide for proof techniques such as coinduction. While symbolic execution as presented here
resembles [Hallahan et al. 2019], the formalization has been adapted to account for non-total values.
The structure of states and the reduction rules over states have also been simplified.

Syntax Figure 5 shows the core language As used by NEBULA. NEBULA operates over a non-strict
typed functional language, consisting of standard elements such as variables, lambdas, algebraic
datatypes, and case statements. e : r denotes that the expression e has type 7. Symbolic variables s
are used in Ag to denote unknown values.

An algebraic datatype is a finite set of constructors with arguments, Dz} ... 7,", . .. ’Dlel e T]? k.

A bottom value, denoted L%, is an error. The superscript L is a label. When we define equivalence
in Section 4, two bottoms will be treated as equivalent if and only if they have the same label.

Notation We define = to check syntactic equality of expressions. e’ € e holdsif e’ is a sub-expression
of e. The expression e [e; / e;] denotes e with each occurence of the sub-expression e; replaced by
ez. If we have a mapping V from symbolic variables to expressions, we write e [V (s) / s] to denote
e with all occurrences of s replaced with the expression V (s) for each s in V.

Symbolic Weak Head Normal Form Non-strict semantics reduces expressions to Weak Head
Normal Form (WHNF) [Peyton Jones 1996], i.e. a lambda expression or data constructor application.
Correspondingly, symbolic execution reduces expressions to Symbolic Weak Head Normal Form
(SWHNF). SWHNEF is defined as follows:

True e=s
True e=D¢
SWHNF (e) = { True e=Ax.e
True e=1t
False otherwise

Symbolic variables and bottoms are in SWHNF because they function as stopping points for
symbolic execution, just as lambda expressions and data constructor applications do.

States Symbolic execution operates on states of the form (e, Y). e is the expression being evaluated.
The symbolic store Y is used to record values assigned to symbolic variables. Symbolic variables
map to data constructors that are fully applied to symbolic variables. We refer to the mappings as
concretizations. We write s € Y if Y has a mapping for s. We overload €, so that (s, e) € Y denotes
that s is mapped to e in Y. lookup(s, Y) denotes the data constructor application that Y contains
for s. Y{s — D5} denotes the symbolic store Y with s mapped to D §.

Reduction We formalize evaluation in terms of small-step reduction rules. We write S < S’ to
indicate that S can take a single step to the state S’. We write S <=* S’ to indicate that S can
be reduced to the state S’ by zero or more applications of <. Because expressions can contain
symbolic values, it is sometimes possible to apply more than one reduction rule to a state or to apply
the same rule in multiple different ways. Whenever this situation arises in symbolic execution, the
state is duplicated, and each possible rule is applied to a distinct copy of the state. This enables the
execution to explore all possible paths through a program.

Figure 6 shows the reduction rules. The rules for lambda expressions and applications are
standard. Var looks up expressions (such as the definitions of min or <= in Example 2.1) in an implicit
environment. Note that these expressions may be recursive. A case expression case e of {@} branches
depending on the value of e, which we call the scrutinee. The CsEv rule for case statements reduces
the scrutinee of the case statement to SWHNF, so that CsDC can be used to select the appropriate
branch. If the scrutinee of the case statement evaluates to a symbolic variable s, the applicable rule
depends on whether the symbolic variable is already in the state’s symbolic store Y. If s € Y, the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 177. Publication date: October 2022.

177:8 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

—SWHNF(f)
s Y) > ,’ Y/
VAR Aprp AR 5) AprprA
(x, Y) = (fe V)= ((Ax.e)e, Y) —
(Lookup(x), Y) (f'e, Y (e’ [e/x], Y)
e,Y)— (e/, Y’
CsEv () () CsDC
(caseeof {a}, Y) — (case DEof (DX — eg;...}, Y) —
(case e’ of {a}, Y') (eq [€/ %], Y)
FRDC s¢Y Sfresh LeDC s€Y DS =1lookup(s,Y)
R K
(casesof (DX > eg;...}, Y) > (casesof {DX > eg;...}, Y) —
(eq [S'/ %], Y{s = Ds}) (ea [§/X], Y)
B1DC L fresh BrApp——— BiCs
(casesof {DX — eg;...}, Y) (LEe, V) (case LT of {@}, Y)
= (L5, v{s - 11} = (L5 Y) = (L5 Y)

Fig. 6. Reduction Rules

rule LkDC selects the appropriate case statement branch to continue evaluation. If s ¢ Y, then FRDC
splits the state to explore each possible branch, and it records the choice made along each branch
in Y so that LkDC can be applied the next time each state branches on s.

BrApp and BrCs force any expression which must evaluate L% to reduce to LI itself. BrDC
concretizes a symbolic variable to 1! with a fresh label L. The inclusion of BrDC requires any
proofs relying on our symbolic execution engine to consider the possibility of a partial input for any
of a program’s arguments. Labels can be used to distinguish between errors from distinct sources.

Our reduction rules, as we present them here, assume that all symbolic values are first-order.
Nevertheless, our system is capable of proving properties that involve symbolic functions. We
describe our method of handling symbolic functions in Section 6.

Approximation We define an approximation relation Cy on states. Intuitively, S Ty S’ (“S is
approximated by S’” or “S’ approximates S”) if S is a more concrete version of §’—that is, if S
replaces all the symbolic variables in S’ with other expressions in a consistent way and is the same
as S’ otherwise.

We formalize Cy in Figure 7. S Ey S’ holds if there is any inference tree with S Cy S’ as the
root. The subscript V is a mapping V = {... (s, €), ...} from symbolic variables in S’ to expressions
in S. We define lookup(s, V) to refer to the expression e such that (s, e) € V. We overload €, so that
s € V holds if there is some mapping for s in V. We use S C S’ as shorthand for 3V.S Cy §’.

It should be noted that checking whether one state approximates another is undecidable in
general, as it requires checking if a state’s execution (alternatively, a program’s execution) will
reach a particular point eventually. However, our formalization of C carefully ensures that symbolic
execution explores all paths through a program, and thus can be used to verify properties of
programs. We state this formally as Theorem 3.1:

THEOREM 3.1 (SymBoLIC ExEcUTION COMPLETENESS). Let Sy and S, be states such that S; C S,. If
S1 = Si, then either S| C S,, or there exists S such that S, — S, and S{ C S;.

Most of the rules of C simply walk over the two states’ expressions recursively. The most
interesting piece of the definition of Cy is the handling of symbolic variables on the right-hand

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.

Checking Equivalence in a Non-strict Language 177:9

Je’.(e1, Y1) =" (¢/, Y1) A (e/, Y1) Cy (ez, Y2)
(e1, Y1) Cy (e2, 1)

Je’ = lookup(s, V), e”.(¢/, Y1) =" (¢, Y1) A (e1, Y1) Cv (¢”, Y2)
Je = lookup(s, Y2) (e1, Y1) Cy (e, Y2)

(e1, Y1) Cy (s, Y3)

s¢ YZ de = IOOkup(s9 V)7e,'(e7 Yl) =" (6/9 Yl) A (617 Yl) Cvy (e,’ Y2)

C-EvAL

C-Sym1

C-Sym2
(els Yl) I;V (S, YZ)
(e1[x/x1], Y1) Cv (ez[x/xz], Y2) x fresh
C-VAR C-Lam
(x, Y1) Ev (x, Y2) (Ax1 . ey, Y1) By (Axz . e, Y2)

(617 Yl) ;V (627 YZ)
V(D x; — ef) € a1.A(D x; — ef) € az, X fresh.(ef [X/x1], Y1) Ev (ef[X/X:], Y2)

C-CASE = =
(case e of {a1}, Y1) Cy (case e; of {as}, Yo)
(elv Yl) EV (e{’ YZ)
(e2, Y1) v (eg, Y3)
C-DC C-Arp — C-Br
(D, Y1) Ev (D, Y2) (e1 ez, Y1) Cv (e e, Y2) (L, Y1) Cy (L5, V)

Fig. 7. Approximation Definition

side of the relation. The rule C-Sym2 allows us to establish that (e;, Y;) Cy (s, Y;) when s ¢ Ys,
by fetching e = lookup(s, V) and checking if there is some e’ such that (e, Y;) <" (¢’, Y1) and
(e1, Y1) Cy (€', Y2). C-Syml is similar to C-Sym2, but it applies to the case where there is some
e = lookup(s, V), and thus requires additionally that e; C e. The final rule of interest is C-Evar,
which states that (e, Y1) Cy (ey, Y») if there is some e’ such that (e;, Y;) —* (¢/, Y1) and
(e/, Y1) Cy (e, Y2). In other words, an arbitrary number of deterministic reduction rules can be
applied to the left-hand expression of Cy.

Allowing arbitrary evaluation at various points is essential to ensure that Theorem 3.1 holds.
The following example illustrates this:

Example 3.1. Consider the approximation
(caseid D of {D — f (id D)}, {}) C(s—ida D) (casesof {D — f s}, {})

where id is the identity function, Ax . x, and f is an arbitrary function. After a single reduction
step, the left-hand side of the expression will have inlined the definition of id, reducing to this:

(case (Ax . x) Dof {D — f (id D)}, {}).
If C required that a symbolic variable on the right map precisely to the expression on the left, then
(case (Ax . x) Dof {D — f (id D)}, {}) Cy (casesof {D — f s}, {})
would not hold for any V. C-Sym2 allows leaving V = {s — id D}, to preserve the approximation.

In Section 6, we will formalize a simpler computable relation C that implies approximation. In
our implementation of NEBULA, we use C rather than E to satisfy the premises of our proof rules.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 177. Publication date: October 2022.

177:10 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

k 1 — 2
er=e ViR Y.e; = ¢
SYN-EQ-EQquiv————— DC-Equiv
,Y,e1 = e R, Y.Del...e, = Deé’...e
s fresh
R, Y,(Ax1.e1)s = (Ax3.e)s
Lam-Equiv Bort-Equiv
R, Y, Ax1.e1 = Axy . e R Y, 1L =1L

Fig. 8. Syntactic equivalence and equivalence based on splitting SWHNF expressions

4 EQUIVALENCE

Consider two expressions e; and e, that share a set of free (symbolic) variables {s; . .. s }. We wish
to define equivalence = for non-strictly computed values. Intuitively, equivalence for non-strictly
computed values means that the two expressions both evaluate to the same value or both fail to
terminate. We will formalize this with some mutually recursive definitions. First, we define =WHNF
which checks equivalence only on WHNF expressions and labeled bottoms (and treats bottoms
with different labels as inequivalent):

vk el = €? er=(Diej...e)Ney=(Dyel...eF)
(e _WHNF) = Veej[e/s1] = ej[e/s2] e =As;.efAex=1sy. ¢
Li=1L, e; =1L ne, =11
False otherwise
Next, we say that a group of concretizations ef,...e/ for variables {s;...si} satisfies Y if

there exists some mapping V such that, for every 1 < i < k, either s; is unmapped in Y or
(ef, Y) Cy (e;, Y), where e; = lookup(s;, Y). Now we can define general equivalence. We say that
e; and e; are equivalent with respect to some symbolic store Y and write e; =y p ey if, for all
concrete assignments ef, . .. e{ to {s; ...sx} that satisfy Y, both expressions either (1) evaluate to
the same WHNF expression, with corresponding internal values or thunks also equivalent:

Jej.ej.eilef /s1...ef [sp] =" ef Aeglef [s1...ef [sp] =" ey Aeg =WHNFE e,
or (2) do not terminate:

Vei,ey.(erlef /s1...ef [sk] =" el Neylef [s1...ef [sk] =" e3)
= (~SWHNF(e]) A =SWHNF (e}))

We treat bottom values with different labels as distinct because programmers might not want
to treat errors with different sources as interchangeable. Recall that, when a symbolic variable is
concretized as a bottom value, it receives a fresh label to distinguish it from other bottom values.
This also means we do not need to distinguish between a symbolic variable’s evaluation terminating
with an error or failing to terminate: the labeled bottom can represent either behavior since it is
distinct from non-terminating expressions and from other bottom values.

4.1 Equivalence Rules

We define a relation on states S = S’ that is true if and only if corresponding inputs to S and S’
produce syntactically equivalent outputs. Here, we formalize proof rules that allow NEBULA to show
that S = S’ holds. In Section 6, we will discuss the actual implementation of these rules in NEBULA.
Syntactic and SWHNF Equivalence The rules in Figure 8 allow us to prove the equivalence of
two expressions. The rule Syn-E@-Eguiv allows us to discharge two expressions as equivalent if
they are syntactically equal. The other three rules concern expressions in SWHNF. Given two

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.

Checking Equivalence in a Non-strict Language 177:11

Y(e;, Y')s.t.(er, Y) = (e}, Y'). Y(ey, Y')s.t.(e2, Y) = (e;, Y').
R, Y' e = e R, Y e = e
ReD-L RED-R
R, Y, eq = e R, Y, eq = e

Fig. 9. Reduction Rules

(eR, el YR) € R —SWHNF(eF) —~SWHNF(ef)

RU (e1,e5,Y), Y,e1 = e, AV.(er, Y) Ev (ef, YR) A (e, Y) Ty (e, YF)
RADD U-CoIND
R, Y,e; = e R, Y,e1 = e
A(ef, e, YR) € R,V . (e1, Y) Cy (ef, YR) A (e2, V) Ty (5, YF)
G-CoiNDp
R, Y, e = e

Fig. 10. Unguarded and Guarded Coinduction

expressions that are applications of the same data constructor, e; = De; ...e; and e, = Def...e?,

the rule DC-Equiv reduces checking the equivalence of e; and e, to checking the equivalence of
each matching argument pair (e}, e?). Lam-Equv states that two lambda expressions are equivalent
if their applications to a fresh symbolic value are equivalent. Bor-EQuiv says two bottoms are
equivalent if they share a label. These rules follow easily from the definition of equivalence.

Reduction Rules Figure 9 shows the rules Rep-L and Rep-R, which apply symbolic execution to
the left and right state, respectively, being checked by the relation. The correctness of these rules is
justified by Theorem 3.1, which establishes the completeness of symbolic execution.

When used alongside the SWHNF equivalence rules, Rep-L and Rep-R are sufficient to check
equivalence up to some input depth, on programs that terminate for all finite inputs. In the next
section, we will see how coinduction can be used to extend this result to arbitrarily large inputs
and programs which do not necessarily terminate, allowing full verification of equivalence.

4.2 Equivalence Verification with Coinduction

The basis of NEBULA’s approach to verification is coinduction. Coinduction is a proof technique
that applies to infinite data structures, just as induction applies to finite data structures. Whereas
induction might be seen as constructing a complex object from a base case and inductive steps,
coinduction works in the opposite direction. Coinduction relies on a proof that an object upholds
a property and then deconstructs the object to show that each of its parts satisfies the same
property [Gordon 1995; Kozen and Silva 2017]. Coinduction uses a bisimulation to prove two
states’ equivalence. A bisimulation is a relation between states, in which two states are related
only if they are still related after being reduced. We formalize our use of coinduction as the rules
RADD, U-Coinp, and G-Coinp in Figure 10. In our calculus, we build a bisimulation R as a set of
state pairs (S1, S2). R relates S; and S, if either (1) evaluating S; and S, results in a cycle where
the two states are approximated (as defined in Section 3) by other states in R or (2) S; and S,
are equivalent when reduced to SWHNF. In the case that both states reach SWHNF expressions
with sub-expressions, equivalence of the sub-expressions can be established either by coinduction
(relating the sub-expressions with R) or by some other technique such as syntactic equality.

As previously stated, Figure 10 shows the coinduction rules RApp, U-Coinp, and G-Coinp that
NEBULA uses to prove state pairs’ equivalence. RApp attempts to build a bisimulation by adding
an expression pair (ef, ef) and a corresponding symbolic store Y® to R. U-Conp allows NEBULA

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 177. Publication date: October 2022.

177:12 John C. Kolesar, Ruzica Piskac, and William T. Hallahan

{1, YL,ef = eg‘ er=fel ...ef Jef€erle],Y)Cy (e{‘, Yh)
ey = el [V(s)/s] ~calls(e), f) R Y,ei[e) /e]] = e
LEMMALEFT
R, Y, e = e
{LbLYes =ea ex=fef ...ef Jej€es(e;, Y)Cy (eZL, Yh)
e}/ = elL [V(s) / s] ﬂcalls(e}/,f) R, Y,e; = e [eY / e;]
LEMMARIGHT
R, Y, e = e
. {1 Yeoel = ¢f (er, Y)Cv (el, YE) (e2, Y) Cy (ef, YE)
R, Y, e1 = e

Fig. 11. Proof Rules for Lemmas

to discharge a pair of expressions (ey, e;) and a corresponding symbolic store Y if =SWHNF (eR),
—|SWHNF(e§), and there is a mapping V such that (e;, Y) Cy (ef, YR) and (e, Y) Cy (ef, YR,
G-Coinp allows NEBULA to discharge a pair of expressions (e;, ez) and a corresponding symbolic
store Y if there is a mapping V such that (e;, Y) Cy (ef, YR and (e, Y) Cy (e§, YR).

At a high level, U-Coinp and G-Coinp are both sound because of Theorem 3.1. If there is a path
that could lead to a counterexample between (e;, Y) and (e, Y), then there must also be a path
that leads to a counterexample between (ef , YRy and (ef , YRy,

To uphold soundness, we enforce productivity properties for our proof trees when applications
of RApD, U-Coinp, and G-Coinp occur. The productivity properties involve the rules from Figures 8
and 9:

Definition 4.1 (U-Productivity). A proof tree is U-productive if both an application of Rep-L and
an application of Rep-R occur between every use of RApp and every corresponding use of U-Coinp.

Definition 4.2 (G-productivity). A proof tree is G-productive if an application of DC-Equiv or
Lam-Equiv occurs between every use of RApp and every corresponding use of G-Coin.

A proof tree must be both U-productive and G-productive in order to be valid. Enforcing U-
productivity prevents us from making circular proofs that add states to R and then immediately use
the added states to discharge the branch. G-productivity prevents circular proofs in the same way
that U-productivity does, but it allows us to use states that are in SWHNF during coinduction. This
is important if a state enters SWHNF immediately after an application of DC-Equiv or Lam-Equiv.

Soundness We define the soundness of an equivalence checker as follows:

Definition 4.3 (Soundness). A set of proof rules is sound if a productive proof tree using those
rules, and with the conclusion R, {},e; = e, can be constructed only if e; and e, are equivalent.

We formally state the soundness of the coinduction rules, in combination with the rules from
the prior sections, as the following theorem:

THEOREM 4.4 (SOUNDNESS OF COINDUCTION RULES). The syntactic equality rule (Syn-EQ-EQuiv),
the SWHNF equivalence rules (DC-Equiv and Lam-EQuiv), the reduction rules (REp-L and Rep-R), and
the coinduction rules (RApbp, U-Coinp, and G-CoInND) are sound when used in a productive proof tree.

4.3 Lemmas

As we mentioned in Example 2.2, direct applications of coinduction are not always possible.
Sometimes we need lemmas—extra state pairs that we have proven equivalent—in order to guide
an expression into a form more amenable to C and coinduction.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 177. Publication date: October 2022.

Checking Equivalence in a Non-strict Language 177:13

In Fig