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Abstract
We use recent work of Jonah Blasiak (2012 arXiv:1209.2018) to prove a
stability result for the coefficients in the Kronecker product of two Schur
functions: one indexed by a hook partition and one indexed by a rectangle
partition. We also give nearly sharp bounds for the size of the partition starting
with which the Kronecker coefficients are stable. Moreover, we show that
once the bound is reached, no new Schur functions appear in the decom-
position of Kronecker product. We call this property superstability. Thus, one
can recover the Schur decomposition of the Kronecker product from the
smallest case in which the superstability holds. The bound for superstability is
sharp. Our study of this particular case of the Kronecker product is motivated
by its usefulness for the understanding of the quantum Hall effect (Scharf T
et al 1994 J. Phys. A: Math. Gen 27 4211–9).

Keywords: Schur functions, Kronecker product, stability, q-discriminant,
quantum Hall effect

1. Introduction

Let DM and DN be the irreducible characters of the symmetric group on n letters, Sn, indexed by
the partitions λ and N of n. The Kronecker productD DM N is defined by

w w w( )( ) ( ) ( )D D D D�M N M N for all w Sn� . Thus, D DM N is the character that corresponds to the
diagonal action of Sn on the tensor product of the irreducible representations indexed by λ and
N. Then, we have
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n
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where g , ,( )M N O is the multiplicity of DO in D DM N. Hence, the numbers g , ,( )M N O are non-
negative integers.

By means of the Frobenius map, one can define the Kronecker (internal) product on the
Schur symmetric functions by

s s g s, , .
n

( )*
A
� M N O�M N
O

O

A reasonable formula for decomposing the Kronecker product is unavailable, although the
problem has been studied since the early twentieth century. Some results exist in particular
cases. Lascoux [LA], Remmel [R], Remmel and Whitehead [RW], and Rosas [Ro] derived
closed formulas for Kronecker products of Schur functions indexed by two row partitions or
hook partitions. Dvir [D], and Clausen and Meier [CM] have given, for any λ and μ, a simple
and precise description for the maximum length of ν and the maximum size of 1O whenever
g , ,( )M N O is non-zero. Bessenrodt and Kleshchev [BK] have looked at the problem of
determining when the decomposition of the Kronecker product has one or two constituents.
Similarly, combinatorial interpretations of the Kronecker coefficients g , ,( )M N O exist only in
particular cases: (i) if λ and N are both hooks [R]; (ii) if λ is a two row partition (with some
conditions on the size of the first part) [BO-2]; (iii) if λ is a hook partition [B]; (iv) if λ and N
are both two row partitions [BMS]. Recent years have seen a resurgence of the study of the
Kronecker product, motivated by application to geometric complexity theory and quantum
information theory. In the first seminal paper on the Kronecker product, Murnaghan [M]
observed the following stability property. Given the partitions , ,¯ ¯ ¯M N O of a b c, , respectively,
define n n a,( ) ≔ ( ¯ )M M� , n n b,( ) ≔ ( ¯ )N N� , and n n c,( ) ≔ ( ¯ )O O� . Then, the
Kronecker coefficient g n n n, ,( ( ) ( ) ( ))M N O does not depend on n for n larger than some
integer N N , ,( ¯ ¯ ¯ )M N O� . We say that the Kronecker coefficients g n a, ,(( ¯ )M�
n b n c, , ,( ¯ ) ( ¯ ))N O� � stabilize for n N. . Proofs of this stability property and lower
bounds for N were given by Brion [Br], using algebraic geometry, and Vallejo, [V1, V2]
using combinatorics of the Young tableaux. More generalized stability notions make sense.
These were first observed by Manivel [Man]. Generalized stability has also been recently
studied by Stembridge [St]. He refers to a triple of partitions , ,( )B C H as stable if, for any
other triple of partitions , ,( )M N O , the Kronecker coefficient g n n n, ,( )B M C N H O� � �
does not depend on n for n large enough. Stembridge’s conjecture was proved by Sam and
Snowden [SS]. Pak and Panova [PP], and independently Vallejo [V3], recently gave alternate
proofs of k-stability for Kronecker coefficients, i.e., stability for the triple k1 , , 1k k( ).

In this article, using Blasiak’s work [B], we investigate the stability of the Kronecker
coefficients g , ,( )M N O when mt( )M � is a rectangle partition of n=mt and n d, 1d( )N � �
is a hook partition of n. Specifically, if m( )O is the partition obtained from O by adding a row of
length m and reordering the parts to form a partition, then whenever t d 1. � we have

g m n d g m n d m, , 1 , , , 1 , .t d t d m1( ) ( )( ) ( ) ( )( ) ( )O O� � � ��

We note that, using conjugates of partitions, this result is a special case of k-stability.
However, our proof is completely different from all previous proofs in the literature (see
[PP, St, V3]). Since the stability property fails if t d 1� � , our method gives a nearly sharp
bound for t, starting with which stability holds. Moreover, this bound depends only on t and
d, while the bound in [V3] depends on all three partitions. In fact, our method allows us to
prove a much stronger stability property, as explained below.
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If t d 1. � , all Schur functions appearing in the decomposition of s sn d m m,1d t 1( ) ( )*� � � are
of the form s m( )O for a partition ν, such that sO appears in the decomposition of s s .n d m,1d t( ) ( )*�
Thus, if n m d 1( )� � , one can completely recover the decomposition of the Kronecker
product s sn d km m,1d d k1( ) ( )*� � � � from the decomposition of Kronecker product s s .n d m,1d d 1( ) ( )*� �

We call this property superstability of Kronecker coefficients. Superstability fails if t=d.
Thus, our bound, t d 1� � , starting with which superstability holds, is sharp.

Our study of the particular case of the Kronecker product of a hook partition and a
rectangular partition is motivated by its usefulness for the understanding of the quantum Hall
effect [STW]. The connection between the fractional quantum Hall effect and the decom-
position of even powers of the Vandermonde determinant in the Schur basis has been
described in many articles. We refer the reader to the introduction of [STW] and the refer-
ences therein. In [STW], the authors give two algorithms for computing the coefficients in the
decomposition. They note that ‘the main inconvenience of these methods is that they give
only the complete expansion. To investigate the individual coefficients, one probably has to
look at the q-analogue. In this case, the coefficients have a nice expression, although they are
not amenable to practical computations.’ In fact, the authors show that the problem of finding
the coefficients in the decomposition of the q-discriminant is equivalent to finding the Kro-
necker product of a square character and a hook character. Since we are now interested in
finding the coefficients in the decomposition of s sm m d,1m d2( ) ( )* � , if d m� , we can reduce the
problem to finding the coefficients in s sm m d d1 ,1d d1( ) ( ( ) )* � �� . In fact, using the S3 symmetry of
the Kronecker coefficients and the fact the s s s s* *�M N M Na a, whereMa is the conjugate of λ, one
can reduce the calculation even further to the product s sd d d1 1,1d d1 2(( ) ) ( )*� � �� . Of course, this
reduction of the problem to a much smaller dimension only helps if the leg (or the arm) of the
hook is shorter than the side of the square.

2. Preliminaries and notation

In this section we set the notation and introduce some basic background about partitions and
Schur functions, mostly following [BO-1]. For details and proofs of the contents of this
section see [Ma] or [S]. Let n be a non-negative integer. A partition of n is a weakly
decreasing sequence of non-negative integers, , , , ℓ1 2≔ ( )M M M My , such that

niM M� � � . We write nAM to mean λ is a partition of n. The non-zero integers iM are
called the parts of λ. We identify a partition with its Young diagram, i.e. the array of left-
justified squares (boxes) with λ1 boxes in the first row, λ2 boxes in the second row, and so on.
The rows are arranged in matrix form from top to bottom. The size of λ is iM M� � . The
length of λ, ℓ ( )M , is the number of rows in the Young diagram. Given a partition λ, its
conjugate is the partition Ma whose Young diagram’s rows are precisely the columns of λ. For
an example, see figure 1.

Given two partitions λ and N, we write N M� if and only if ℓ ℓ( ) ( )-N M and i i.M N for
i ℓ1 ( )- - N . If N M� , we denote by λ/μ the skew shape obtained by removing the boxes

corresponding to N from λ. For an example, see figure 2.

Figure 1. λ= (6, 4, 2, 1, 1), ℓ (λ)= 5, 14M � and Ma = (5, 3, 2, 2, 1, 1)
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A semi-standard Young tableau (SSYT) of shape λ/μ is a filling of the boxes of the skew
shape λ/μ with positive integers so that the numbers weakly increase in each row from left to
right and strictly increase in each column from top to bottom. The type of a SSYT T is the
sequence of non-negative integers t t, ,1 2( )y , where ti is the number of is in T. We write Ti j, to
refer to the filling of the box in the ith row and jth column of T.

If T is a SSYT of shape λ/μ and type t t, ,1 2( )y , we define its weight, w(T), to be the
monomial obtained by replacing each i in T by xi and taking the product over all boxes, i.e.
w T x xt t

1 2
1 2( ) � y. For example, the weight of the SSYT in figure 3 is x x x x x1

2
2
4

3
2

4
4

6
3. The skew

Schur function sM N is defined combinatorially by the formal power series

s w T ,
T

( )��M N

where the sum runs over all SSYTs of shape λ/μ. To obtain the usual Schur function one
sets N � �.

The space of homogeneous symmetric functions of degree n is denoted by n- . A basis for
this space is given by the Schur functions s n{ }AMM . The Hall inner product on n- is
denoted by , n- and it is defined by

s s, ,n E�M N MN-

where EMN denotes the Kronecker delta.
For a positive integer r, let p x xr

r r
1 2� � � ". Then p p p p

ℓ1 2 ( )� yN N N N N is the power
symmetric function corresponding to the partition N of n. If CSn denotes the space of class
functions of Sn, then the Frobenius characteristic map F CS: n

nl - is defined by

F z p ,
n

1( ) ( )
A
�T T N�
N

N N
�

where z m m n m1 2m m m
n1 2 n1 2! ! !� yN if n1 , 2 , ,m m mn1 2( )N � y , i.e. k is repeated mk times in

N, and ( ) ( )T N T X� for an SnX � of cycle type N. Note that F is an isometry. If DM is an
irreducible character of Sn then, by the Murnaghan–Nakayama rule [S], F s( )D �M

M.
We define the Kronecker product of Schur functions by

s s g s, , ,
n

( )*
A
� M N O�M N
O

O

where g , ,( )M N O is the multiplicity of DO in D DM N.

Figure 2. λ/μ where λ= (6, 4, 2, 1, 1) and μ= (3, 1, 1).

Figure 3. A SSYT of shape λ/μ= (7, 6, 5, 3)/(3, 2, 1) and type (2, 4, 2, 4, 0, 3).
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A word is a sequence of letters from some totally ordered set called an alphabet. A word
a a an1 2y in the alphabet 1, 2,{ }y is called a lattice permutation (or Yamanouchi) if in any
initial factor a a aj1 2" , the number of iʼs is at least as great as the number of i 1( )� ʼs for all i.
For example, 11 122 321 is a lattice permutation. The reverse reading word (rrw) of a tableau
is the sequence of entries of T obtained by reading the entries from right to left and top to
bottom. For example, the rrw of the tableau in figure 3 is 432 264 416 631 422.

3. Blasiak’s combinatorial rule

In this section, following [B], we give a brief description of the combinatorial interpretation of
the Kronecker coefficients when one of the Schur functions is indexed by a hook partition. All
partitions in this section are of size n. We write d( )N for the hook partition n d, 1d( )� . First,
we introduce the necessary notation.

The set 1, 2,{ }y is called the alphabet of unbarred (or ordinary) letters, and the set
1, 2,{¯ ¯ }y is called the alphabet of barred letters. A colored word is a word in the alphabet

1, 2, 1, 2,{ } {¯ ¯ }� �� y y . We will need the following orders on �.

the natural order
the small bar order

: 1 1 2 2
: 1 2 1 2

¯ ¯
¯ ¯
� � � � "
E E " E E E "

k� order: k1 2 1 2k k k k k k¯ ¯ ¯� � � � � �" "
k k k k k1 1 2 2k k k k k k� � � � � � � � � � ".

Clearly, 1� � � and � �d E.
A semistandard colored tableau, for any of the above orders on �, is a tableau with

entries in � such that: (i) unbarred letters increase weakly from left to right in each row and
strictly from top to bottom in each column; (ii) barred letters increase strictly from left to right
in each row and weakly from top to bottom in each column.

Given a semistandard colored tableau T for the order k� , it can be converted to a tableau
for order k 1� � by performing exchanges between each k and the letters k1{ }y as follows. Let
β be the bottommost k . If β is greater than it’s neighbor below or to its right in the k 1� � order,
swap with the lesser (or only) neighbor. Favor the neighbor below, if the neighbors are equal.
Repeat until β can no longer be exchanged with any neighbor. Repeat the process with the
second bottommost k , and so on. Converting from the order k 1� � to the order k� is obtained
by simply reversing the steps.

Given a semistandard colored tableau for any one of the above orders, one can convert it
to a semistandard colored tableau for another order using Jeu-de-Taquin moves as described
above. Conversion from p to � (or � to p) may be regarded as repeated conversion from k�
to k 1� � (respectively, k� to k 1� � ). In figure 4, we use example 2.17 in [B] to show the
conversion of a semistandard colored tableau for the small bar order to a semistandard colored
tableau for the natural bar order. Converting from the natural order to the small bar ordered is
obtained by simply reversing the steps.

The content of a colored tableau T is c c c, ,1 2( )� y , where ci is the number of i and ī in
T. The total color of T is the number of barred letters in T.

Let T� be a colored tableau for natural order � and let TE be the tableau obtained from
T� by converting to the small bar order p. Let Tb be the tableau of barred letters in TE.
Denote by Tsk the tableau obtained by placing T TbE above and to the right of Tb( )a, so that
the NE corner of Tb( )a touches the SW corner of T T ,bE and removing the bars from the
letters of Tb( )a.
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In figure 5, we show an example of the tableaux T T T, , b� E , and Tsk, where T� is the
tableau on the right in figure 4.

We refer to a semistandard Young tableau (for the natural order � or by means of the
Frobenius map one can define the Kronecker (internal) product on the Schur symmetric
functions by bar order p) as a colored tableau. A colored tableau T is called Yamanouchi if
the rrw of Tsk is a lattice permutation.

A colored tableau T� is color raisable if the box in the SW corner has an unbarred letter.
The notion of color raisable makes sense only for tableaux using the natural order.

In the rule below, the colored tableaux are in the natural order.
Blasiak’s combinatorial rule: The Kronecker coefficient g d, ,( ( ) )M N O equals the

number of color raisable Yamanouchi colored tableaux of shape ν, content λ, and total
color d.

Given a colored word w, the the unbarred word of w, denoted wØ, is the word obtained
from w by removing all barred letters.

We end this section by showing that, if we start with a Yamanouchi colored tableau in
small bar order and convert to the natural order, after every Jeu-de-Taquin move the unbarred
rrw of the new tableau is a lattice permutation.

Proposition 3.1. Let TE be a colored Yamanouchi tableau. The unbarred rrw of the tableau
obtained by converting TE to the k� order (for some k 0� ) is a lattice permutation.

Proof. Let T be a tableau in some intermediate state between TE and its conversion to the
order k� , and let T a be the tableau obtained after the next Jeu-de-Taquin move in T. Let w,
respectively wa, be the unbarred rrw of T, respectively T a. We will show that if wØ is
Yamanouchi, then so is wØa .

Let x̄ be the letter moved to obtain T a from T. We use the following notation in T: r is
the letter directly to the right of x̄ (if it exists), and q is the letter directly below x̄ (if it
exists). Note that r and q could be barred or unbarred. If it exists, we denote by p the letter
that was bumped by x̄ when it arrived in its current position in T. Note that p is necessarily
unbarred. We refer to the row of x̄ in T as row B. Let u be the number of q 1� to the left
of q in wØ.

If, to get from T to T a, x̄ shifts to the right, then w wØ Ø� a . Now suppose x̄ moves down to
row B 1� (bumping q up to row B). Then q is unbarred, and either q rk- or r does not exist.
Moreover, in row B, there is no q 1� to the right of r. We consider three cases.

(i) p does not exist, i.e. this is the first time x̄ is moving. In T, all the letters in B to the left
of x̄ are barred, and there is no q 1� in row B. Then, all u letters q 1� must be above row B,
and moving q up one row results in wØa Yamanouchi.

(ii) p q 1� � . If the last move of p q 1� � (before obtaining T) was up, clearly
moving q up will result in wØa Yamanouchi. Now consider the case when the last move
of p q 1� � was left. If, at some point prior to this move, x̄ moved down to row B by

Figure 4. Blasiak’s example 2.17.
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bumping a letter q 1� , then wØa is Yamanouchi. If x̄ was always in row B or moved down to
row B by bumping a letter less than q 1� , then the number of q in row B 1� is at least one
more than the number of q 1� in row B (when x̄ arrives in row B directly to the left of the
first q 1� , each q 1� has a q immediately under it, and there must be a q directly under x̄).
Then, there is at least one extra q 1� in T above row B. Thus, moving q up results in wØa
Yamanouchi.

(iii) p q 1� � . Since q rk- , or r does not exist, there are no q 1� ʼs in row B. As in (i),
wØa is Yamanouchi. ,

4. On the Kronecker product of a Hook and a rectangle

In this section, we collect several properties of the partitions indexing Schur functions that
appear in the Kronecker product of the Schur function associated with the hook partition
n d, 1d( )� and the Schur function associated with the rectangular partition mt( ), with

mt n� . For the remainder of the article, T� will denote a semistandard Young tableau for the
natural order and T T, bE , and Tsk will denote the tableaux associated with T�, defined in the
previous section. In addition, η will always denote the shape of Tb, and all colored tableau
will have total color d. Given a colored Yamanouchi tableau TE (or T�) of shape ν, content
mt( ), and total color d, we denote by T1 the tableau formed by the first ℓ ( )I rows of TE/Tb

and by T2 the tableau formed by the remaining rows of TE/Tb. We write
, , , ℓ1 2( )( )Y Y Y Y� y I for the content of T1 and , , , ℓ1 2 1( )( )[ [ [ [� y I � for the content of row

ℓ 1( )I � of TE.
Recall that our goal is to show that if t d w� � , w 1. , then

g m n d g m n d m, , 1 , , , 1 , , 1t d t d m1( ) ( )( ) ( ) ( )( ) ( )( )O O� � � ��

where m( )O is obtained from ν by adding a part of size m. Moreover, we will show that every
partition indexing a Schur function appearing in s sm n d m,1t d1( ) ( )* � �� is obtained from a partition
indexing a Schur function appearing in s sm n d,1t d( ) ( )* � by adding a part of size m. To prove this,
we will define a bijection of color raisable Yamanouci tableaux, defined by inserting a row of
length m after row ℓ ( )I and changing the filling of the tableau according to certain rules.
Towards our goal, we need to understand some properties of possible shapes of tableaux
occurring, as well as the filling of certain rows of these tableaux. We note that if m=1, we
have s s st d d1 ,1 1,1t d t d 1( ) ( ) ( )* �� � � � . Similarly, if d=0, we have s s sm mt mt t( ) ( ) ( )* � . In both cases

Figure 5. An example of tableaux T<, T ≺, T b, T sk.
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the superstability property holds if t d w� � with w 1. . Thus, for the remainder of the
paper we can assume that m 2. and d 1. .

In the next theorem, we prove an important property of tableaux counted by Blasiak’s
rule to determine g m n d, , 1 ,t d(( ) ( ) )O� . Here, the fact that the tableaux are color raisable is
irrelevant.

Theorem 4.1. Given a colored Yamanouchi tableau T� of shape ν, content mt( ), and total
color d, the shape of Tb completely determines the tableau Tb.

Proof. By the definition of a semistandard colored tableau, Tsk must be an ordinary SSYT of
type mt( ). Moreover, its rrw is a lattice permutation. Let η be the shape of Tb. In Tsk, the shape
of Tb( )a is Ia. Since there are exactly m of each letter appearing in Tsk, the rrw of Tsk must end
in t, the highest available letter, and therefore the last row of Tsk, which has length

1
IaI , is filled

with t. Since the content of Tsk is a rectangle, the second to last row in Tsk must start with
t 1� and thus can only be filled with the letters t 1� and t. By the semistandard condition,
the first

1
IaI entries in this row must be t 1� . Moreover, by the lattice permutation condition

and the fact that the content is a rectangle, there cannot be more than
1

IaI letters t 1� in the

second to last row in Tsk. Continuing in this way, we see that the content of Tb is determined.
In fact, each row of Tb is filled in decreasing order from right to left with the letters
t t t, 1, 2,¯ � � y. ,

The next observation is an immediate consequence of the proof of theorem 4.1.

Remark 4.2. Let T� be a colored Yamanouchi tableau of shape ν, content mt( ), and total
color d. The barred letters in Tb are precisely t t t, 1, , 11¯ I� y � � . Moreover, the
partition obtained by reading the parts of the content of Tb (i.e., of only the barred letters) in
reverse order is precisely Ia.

Next, we highlight two properties of colored Yamanouchi tableaux of shape ν, content
mt( ), and total color d, in the case when t d w� � , where w 1. .

Proposition 4.3. Let t d w� � , w 1. . Let T� be a colored Yamanouchi tableau of shape
ν, content mt( ), and total color d. Then for every letter s̄ in T� (and thus in Tb), we
have s ℓ w( ). I � .

Proof. By remark 4.2, if s̄ in T�, then s t 11. I� � . For any partition dAI , we have
ℓ d 11 ( ) -I I� � . Thus, s t ℓ d ℓ w( ) ( ). I I� � � � . ,

Corollary 4.4. If T� is as in proposition 4.3 and j s s Tmax is not in b{ ∣ ¯ }� ,
then j ℓ w 1( ). I � � .

Next, we describe some properties of the fillings of Yamanouchi tableaux.

Proposition 4.5. Let T be a colored Yamanouchi tableau. Then for all i j, 1. , T ii j, ⪯E .
Moreover, if Ti j,

E is unbarred, we have i Tj i j,⪯I� a E.
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Proof. Let p Ti j,� E. If p is barred, then p i⪯ by the definition of the small bar order. If p is
unbarred, then p is in TE/Tb. Then p i- , and therefore p i⪯ , by the lattice permutation
condition. By the semistandard condition, the unbarred letters in each column are strictly
increasing. Therefore, i Tj i j,⪯I� a E. ,

We denote by c TØ ( ) the content of the unbarred letters in a colored tableau T. We simply
write cØ if it is obvious which tableau we refer to. Then, ci

Ø denotes the number of unbarred i
in T.

Proposition 4.6. Consider a colored Yamanouchi tableau TE of shape ν. Let
ℓ p ℓ1( ) ( )-I O� � . If c cq q

Ø
1

Ø� � and T qp,1 �
E , then T q 1p 1,1 � ��

E .

Proof. By the Yamanouchi condition, we must have a q 1� in some row p pa � . By the
semistandard condition, T q 1p 1,1 . ��

E . If T q 1p 1,1 � ��
E , by the semistandard condition,

there cannot be any q 1� in row p 1� , or any row below it. Therefore, T q 1p 1,1 � ��
E . ,

Corollary 4.7. If c c cq q q u
Ø

1
Ø Ø� � �� �" for some u 0� and T qp,1 �

E ,
then T q up u,1 � ��

E .

The next proposition establishes bounds for the lengths of rows in Yamanouchi tableaux
of shape ν and of content mt( ). Again, the fact that the tableau is color raisable is irrelevant.

Proposition 4.8. Consider a colored Yamanouchi tableau T of shape ν with content mt( ).
Then, for i ℓ1 ( )- - O , we have c mi i i

Ø - -O I� .

Proof. In TE, the unbarred letter i appears ci
Ø times. By proposition 4.5, each unbarred i

must be in or below row i, and by the semistandard condition each unbarred i is in its own
column. Therefore, ci i

Ø - O .
Let S be the tableau consisting of the first i 1� rows of TE/Tb, and let

f f f f, , , i1 2 1( )� y � be the content of S. (Note that some of the last entries in f could be
0.) Since there are m of the letter 1 (barred or unbarred), row i in TE/Tb may contain the letter
1 at most m f1� times. By the lattice permutation condition, for each j i2, 3, , 1� y � ,
row i in TE contains the letter j at most f fj j1 �� times. Recall that f 0i � . No letter larger
than i can appear in row i of TE/Tb. Thus, we have

m f f f f f f f m.i i i i1 1 2 2 3 1( ) ( ) ( ) ( )-O I� � � � � � � � � ��"

Therefore, c mi i i
Ø - -O I� . ,

The next theorem, while a simple consequence of the previous statements, is crucial for
proving the superstability of Kronecker coefficients.

Theorem 4.9. Let t d w� � and assume that w 2. . Let T be a colored Yamanouchi
tableau of shape ν, content mt( ), and total color d. Then, for p w1 1- - � , we
have mℓ p( )O �I � .

Proof. Let j s s Tmax is not in b{ ∣ ¯ }� . By corollary 4.4, j ℓ w 1( ). I � � . Thus, if
p w1 1- - � , then j ℓ p( ). I � . Then, in TE, all m letters ℓ p( )I � are unbarred.
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Clearly, 0ℓ p( )I �I � . Therefore, by proposition 4.8, we have m mℓ p( )- -O I � . It follows that
mℓ p( )O �I � . ,

It follows easily from the proof of proposition 4.8 that if mℓ 1( )O �I � , the first ℓ ( )I rows
of TE completely determine the filling of row ℓ 1( )I � .

Corollary 4.10. Let T be a colored Yamanouchi tableau of shape ν, content mt( ), and total
color d. Suppose t d w� � , w 1. . If mℓ 1( )O �I � , then i i i1[ Y Y� �� for all

i ℓ1 1( )- - I � . Moreover, if w 3. , then Y also determines the filling of rows
ℓ ℓ w2, , 1( ) ( )I I� y � � in TE.

Proof. Since mℓ 1( )O �I � , by the proof of proposition 4.8, for each i ℓ1 1( )- - I � , the
letter i appears in row ℓ 1( )I � of TE exactly i i1Y Y�� times; and these are precisely the
letters in row ℓ 1( )I � . By the same argument, for k w2 1- - � , each box in row
ℓ k( )I � is filled with the letter obtained by adding 1 to the letter directly above it. ,

As shown in theorem 4.9, if t d w w, 2.� � and g m d, , 0t(( ) ( ) )N O � , then
mℓ 1( )O �I � . Since our goal is to show that the superstability phenomenon occurs starting

with t d 1� � , we examine this case separately. However, since we seek a bijection between
tableaux with t d 1� � and tableaux with t d 2� � , we prove some of the following
statements for t d w� � , w 1. .

Next, we show that if t d 1� � , row ℓ 1( )I � has length m or m 1� , unless η is a
column. In particular, if η is not a hook, we will show that mℓ 1( )O �I � and corollary 4.10
applies.

The next proposition establishes a criterion for η to be a hook.

Proposition 4.11. Let t d w� � , w 1. . Let T be a colored Yamanouchi tableau of shape
ν, content mt( ), and total color d. Let j s s is not in Tmax .b{ ∣ ¯ }� Then j ℓ w 1( )I� � � if
and only if I is a hook.

Proof. Recall that, by remark 4.2, the smallest s such that s̄ is in Tb equals t 11I� � . Then

j d w1 1.1I� � � � �

Therefore,

ℓ w j ℓ j w
ℓ d ℓ d d

1 1
1 1 is a hook.1 1

( ) ⟺ ( ) ⟺
( ) ⟺ ( ) ⟺ A

I I
I I I I I

� � � � � �
� � � � � �

,

Proposition 4.12. Let T be a colored Yamanouchi tableau of shape ν, with content md 1( )� .
If η is not a hook, then mℓ 1( )O �I � .

Proof. By corollary 4.4 and proposition 4.11, since η is not a hook, ℓ j( )I � . Thus,
ℓ j1( ) -I � and c mℓ 1

Ø
( ) �I � . Proposition 4.8 implies that m mℓ 1( )- -O I � . Therefore,

mℓ 1( )O �I � . ,
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We now examine the case when η is a hook by considering two cases: η is a column, i.e.,
1d( )I � , and η is a hook but not a column. We will begin by considering η to be a non-

column hook, and we will prove several propositions related to the shape of ν and filling of T.
Note that if t d w� � , w 1. , and η is a non-column hook, then, by proposition 4.11

and the proof of theorem 4.1, the first row of Tb is filled with the barred letters
ℓ w ℓ w d w, 1, ,( ) ( )I I� � � y � and each of the remaining rows of Tb has one box
filled with a d w� . Thus, every colored Yamanouchi tableau T of shape ν, with content mt( ),
and with non-column hook η has

c m m m ℓ, 1 , . 2ℓ w d ℓØ 1( )( ) ( ) ( )( ) ( ) I� � �I I� � �

If we set ℓ d( )I � in (2) we obtain cØ for the case when 1d( )I � is a column.

Proposition 4.13. Let T be a colored Yamanouchi tableau of shape ν, with content md 1( )� ,
and with non-column hook I. Then, m m1 ℓ 1( )- -O� I � .

Proof. Since η is not a column, d ℓ 0( )I� � , and therefore c m 1ℓ 1
Ø
( ) � �I � . Moreover,

0ℓ 1( )I �I � . Thus, by proposition 4.8, m m1 ℓ 1( )- -O� I � . ,

Proposition 4.14. Let T be a colored Yamanouchi tableau of shape ν, with content md w( )� ,
w 1. , and non-column hook η. If mℓ w( )O �I � , then there is an unbarred ℓ w( )I � in the
first column of TE.

Proof. In TE, all m 1� of the unbarred letters ℓ w( )I � are in or below row ℓ w( )I � , and
no two are in the same column. Thus, if there is no unbarred ℓ w( )I � in the first column,
then m m1 1ℓ w ( )( ) .O � � �I � . ,

Proposition 4.15. Let T be a colored Yamanouchi tableau of shape ν, with content md 1( )� ,
and non-column hook I. Suppose that m 1ℓ 1( )O � �I � . For all ℓ p ℓ1( ) ( )-I O� � , if
T qp,1 �
E and Tp 1,1�

E exists, then T q 1p 1,1 � ��
E .

Proof. By proposition 4.6 the statement is true if c cq q
Ø

1
Ø� � . Suppose that c cq q

Ø
1

Øv � .
From (2) it follows that either q ℓ ( )I� (and c m c m, 1q q

Ø
1

Ø� � �� ) or q=d
(and c m c m ℓ1,q q

Ø
1

Ø ( )I� � � �� ).
(i) q ℓ ( )I� : Since m 1ℓ 1( )O � �I � , by proposition 4.14 there is an ℓ 1( )I � in the first

column. By the semistandard condition, ℓ 1( )I � must be directly below ℓ ( )I in the first
column.

(ii) q=d: By the semistandard condition, T d 1p 1,1 � ��
E , the only unbarred letter larger

than d. ,

Next, we examine the content of the first ℓ 1( )I � rows in a tableau TE.
Given a Yamanouchi colored tableau T with non-column hook η, let k Tℓ 1,1( )� I �

E and let
y be the number of letters ℓ ( )I in row ℓ ( )I of TE. By proposition 4.5, k ℓ 1( )- I � . As
before, we denote by ξ be the content of T1. Let [̃ be the content of the m 1� boxes of row
ℓ 1( )I � in TE. Note that row ℓ 1( )I � might have length m, but we are only interested in the
content of the first m 1� boxes.
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Proposition 4.16. Let T be a colored Yamanouchi tableau of shape ν, with content md w( )� ,
w 1. , and non-column hook I.

(i) If k ℓ 1( )I� � , then mℓ( )( )Y � I and m0 , 1ℓ˜ ( )( )[ � �I .
(ii) If k ℓ ( )I� , then m y,ℓ 1( )( )Y � I � and m y y0 , , 1ℓ 1˜ ( )( )[ � � �I � .
(iii) If k ℓ ( )I� , then m m y, 1 ,k ℓ k1( ( ) )( )Y � � I� � and m y y0 , 1, 0 , 1, 1k ℓ k1 1˜ ( )( )[ � � � �I� � � .

Proof. First, we make some observations. The only possible (unbarred) letters in T1 are
ℓ1, 2, , ( )Iy . By (2), each i ℓ1 ( )- - I in T is unbarred. Consider a letter i k� . Since

k Tℓ 1,1( )� I �
E , no i is in or below row ℓ 1( )I � . Thus, all m unbarred i are in the first ℓ ( )I

rows. There are k 1� such letters. Then, each of the first k 1� parts of ξ equals m. Since η is
a non-column hook, by proposition 4.5, ℓ T ℓ 1ℓ 1,2( ) ( )( )- -I I �I � . Thus, row ℓ 1( )I � in
TE is filled with only the letters k, ℓ ( )I , and ℓ 1( )I � .

(i) Suppose k ℓ 1( )I� � . Then k ℓ1 ( )I� � and mℓ( )( )Y � I . Moreover, by the
semistandard condition, row ℓ 1( )I � is filled with ℓ 1( )I � and m0 , 1ℓ˜ ( )( )[ � �I .

(ii) Suppose k ℓ ( )I� . Since k ℓ1 1( )I� � � , we have m y,ℓ 1( )( )Y � I � . If k ℓ ( )I� ,
then there is no letter ℓ ( )I in any row below row ℓ 1( )I � , and thus T ℓℓ i1, ( )( ) I�I �

E

for i m y1 - - � and T ℓ 1ℓ i1, ( )( ) I� �I �
E for m y i m1 1- -� � � . Thus,

m y y0 , , 1ℓ 1˜ ( )( )[ � � �I � .
(iii) Suppose k ℓ ( )I� . By corollary 4.7, each letter i, k i ℓ ( )- I� , appears in the first

column of TE. Since η is a non-column hook, by proposition 4.5 ℓ Tℓ 1,2( ) ( )-I I � . Thus, each
k i ℓ ( )- I� appears in TE strictly below row ℓ ( )I exactly once, and

m m y, 1 ,k ℓ k1( ( ) )( )Y � � I� � . Similarly, ℓ ( )I appears in TE strictly below row ℓ 1( )I �
exactly once. Then, T ℓℓ i1, ( )( ) I�I �

E for i m y2 - - � and T ℓ 1ℓ i1, ( )( ) I� �I �
E for

m y i m1 1- -� � � . Therefore, m y y0 , 1, 0 , 1, 1k ℓ k1 1˜ ( )( )[ � � � �I� � � . ,

The next corollary, which follows directly from proposition 4.16, gives an analog of
corollary 4.10 in the case when m 1ℓ 1( )O � �I � .

Corollary 4.17. Let T be a colored Yamanouchi tableau T of shape ν, with content md 1( )� ,
and non-column hook I. Suppose that m 1ℓ 1( )O � �I � . Set m0Y � . Then,

i i i i1[̃ [ Y Y� � �� for i ℓ1 ( )- - I , and 1ℓ ℓ ℓ1 1
˜ ( ) ( ) ( )[ Y Y� � �I I I� � .

We need to establish a lower bound for the length of row ℓ ( )I of a tableau counted by
Blasiak’s rule. If η is not a column, this is accomplished in the next corollary. In propositions
4.21 and 4.22 we show that the bound also holds if η is a column.

Corollary 4.18. Let T be a colored Yamanouchi tableau of shape ν, with content md w( )� ,
w 1. , and non-column I. Then, mℓ ( ) .O I .

Proof. If w 2. , this follows from theorem 4.9. If w=1 and η is not a hook, this follows
from proposition 4.12. If η is a non-column hook, by proposition 4.16

m ℓ k ℓ
m k ℓ

if 1
1 ifℓ ℓ

˜ ( ) ( )
( )( ) ( )

⎧⎨⎩
- -

Y [
I I

I
� �

�
� �I I

and the statement follows. ,
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We now consider the color raisable property for tableaux with non-column hook η. We
use the following labeling scheme in a tableau TE. Let a Ti i,2� E for i ℓ2 ( )- - I ,
b Ti ℓ i,1( )� I �

E , and c Ti ℓ i,2( )� I �
E . We illustrate this in figure 6. Note that not all columns are

necessarily of equal length. Boxes to the right of the first column should be viewed as missing
from the figure as needed.

If d( )I � , d 2. , i.e., η is a row, we set a 01 � . Then, proposition 4.19 below still
holds, and proposition 4.20 does not apply. One can also check directly that if d( )I � and
d 2. , then T� is color raisable.

Proposition 4.19. Let T be a colored Yamanouchi tableau of shape ν, with content md w( )� ,
w 1. , and non-column hook I. Suppose that m 1ℓ w( )O � �I � . If a bℓ 1( ) �I , then T� is color
raisable.

Proof. If a bℓ 1( ) �I , when converting to the natural order, Tℓ ,1( )I
E moves to the right. Next,

Tℓ 1,1( )I �
E has a neighbor aℓ ( )I below and a neighbor aℓ 1( )I � to its right. Since a aℓ ℓ1( ) ( )�I I� ,

Tℓ 1,1( )I �
E moves to the right. Similarly, each Ti,1

E , i 2. , moves to the right. We have
T ℓ w1,1 ( )I� �E . Since m 1ℓ w( ) -O �I � , by proposition 4.14, there is an unbarred ℓ w( )I �
in the first column of TE. Thus, T is color raisable. ,

Proposition 4.20. Let T be a colored Yamanouchi tableau of shape ν, with content md w( )� ,
w 1. , and non-column hook I. Suppose that b b k 1k 1� � � for all k ℓ ℓ1 ( ) ( )- - O I� .
If b aℓ1 ( )- I , then T� is color raisable if and only if T d wℓ ,1( ) � �O

E .

Figure 6. Labeling scheme for tableaux with non-column hook η.
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Proof. By the semistandard condition, if ck exists, then a k cℓ k( ) -�I . Therefore,

b b k a k c1 1 .k ℓ k1 1( )- -� � � � �I �

Then, when converting to the natural order, T d wℓ ,1( ) � �I
E always moves down (as long as

b d wk � � ). Thus, Tℓ ,1( )I
E replaces br 1� . If b T d wr ℓ ,1( )� � �O

E , Tℓ ,1( )I
E can no longer move,

and T� is color raisable. If b T d wr ℓ ,1( )� v �O
E , then Tℓ ,1( )I

E will move down again, resulting
in the situation shown in figure 7.

By the Yamanouchi condition, b d w 1r � � � or b d wr � � . Since b d wr v � , we
must have b d w 1r � � � . Then, either cr 1� does not exist, c d w 1r 1 � � �� , or
c d wr 1 � �� . If cr 1� does not exist or c d wr 1 � �� , then cr does not exist. If
c d w 1r 1 � � �� , then c d wr � � or cr does not exist. In either case, Tℓ ,1( )I

E does not
move to the right and T� is not color raisable. ,

Finally, we consider the case when t d w� � , w 1. , and 1d( )I � is a column. This
case is simple enough to completely describe every possible filling of TE, and doing so is
useful in deciding whether TE is color raisable. In TE, every box of η is filled with d w� .
Thus, if η is a column, we have d m- . Note that if ℓ ℓ( ) ( )O I� , then necessarily w=1 and
m=d. The only possible tableau TE in this case has shape d 1 d(( ) )� , and for each

i d1 - - , row i is filled with a d 1� followed by m letters i. The corresponding T� is
obtained by moving each barred letter to the end of its row. Thus T� is color raisable. For the
remainder of the discussion we assume that ℓ ℓ( ) ( )O I� . As before, let k Tℓ 1,1( )� I �

E .
We consider first the case m=d.

Proposition 4.21. Let T a colored Yamanouchi tableau of shape ν, with content dd w( )� ,
w 1. , column 1d( )I � , and ℓ ℓ( ) ( )O I� . Then

d d1 , , 1 . 3k d k w d k1 1( )( ) ( )O � � � � � � �

Conversely, for each k d w d1 min 1, 1{ }- - � � � , there is exactly one colored
Yamanouchi tableau T of shape ν as in (3), with content dd w( )� , total color d, and

1d( )I � . Moreover, T� is color raisable if and only if k d 1� � .

Proof. Since c mi
Ø � for all i d w1 1- - � � and c 0d w

Ø �� , one can easily see that k
completely determines the shape ν and the filling of TE (which in turn determines the filling
of T�). By corollary 4.7, the first column of TE/Tb is filled, from top to bottom, with
k k d w, 1, , 1� y � � . By proposition 4.5, T ii j, �E for all i d w1 1- - � � and all
j 2. . If k d- , when converting to the natural order, the bottom d w� moves down at
every step and T� is not color raisable. If k d 1� � , each d w� moves to the right and T� is
color raisable. ,

Figure 7. Shifting of Tℓ ,1( )I
E if b T d wr ℓ ,1( )� v �I

E .
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Thus, if m=d and t d 1� � , the only color raisable tableau has shape d 1 d(( ) )� with
TE filled as explained in the discussion preceding proposition 4.21. Similarly, if m=d and
t d w� � , the only color raisable tableau has shape d d1 ,d w 1(( ) )� � with TE filled as in the
proof of proposition 4.21.

Now we consider the case m d� .

Proposition 4.22. Let T be a colored Yamanouchi semistandard tableau of shape ν, with
content md w( )� , m d w, 1.� , and with column 1d( )I � . Then

m m m d1 , , , 1 4k d k w d k1 1( )( ) ( )O � � �� � � � �

or

m m m d1 , , 1 , 1 . 5k d k w d k1( )( ) ( )O � � � �� � � �

(If k d 1� � , then (5) does not occur.)
Conversely, for each k d1 1- - � , there is exactly one colored Yamanouchi tableau T

of shape ν given by (4) or (5), with content md w( )� , total color d, and 1d( )I � . Moreover, T�

is color raisable if and only if ν is given by (4).

Proof. Since c mi
Ø � for i d w1 1- - � � , the letter k completely determines the

placement of letters d w1, 2, , 1y � � . Once these letters are placed, the resulting tableau
T ,topE has shape m m1 , , 1k d k w d ktop 1 1(( ) )O � � � � � � � with filling as in the proof of
proposition 4.21.

If k d 1� � , there is no row of length 1 in T ,topE and all m−d labels d+w must be
placed after the last row of T ,topE thus creating a tableau of shape ν as in (4).

If k d- , there are two choices for the placement of the remaining m−d letters d+w:
(i) one label d+w is placed at the end of the first column and the remaining m d 1� �

letters d+w are placed in row d+w, creating a tableau of shape ν as in (4), or
(ii) all remaining m−d letters d+w are placed in row d+w, creating a tableau of

shape ν as in (5).
Suppose ν is as in (4). If k d 1� � , when converting to the natural order all barred

letters move to the right, and T� is color raisable. If k d- , the entry in the SW corner of TE is
d+w, and T� is color raisable.

If ν is as in (5), at every step, the lowest d w� moves down. Since the entry in the SW
corner of TE is d w 1� � , d w� reaches the SW corner. If k d� , the last row of ν has
length 1. If k=d, each of the m−d boxes in the last row of TE, to the right of d w 1� � , is
filled with d+w. Thus, d w� does not shift from the SW corner to the right and T� is not
color raisable. ,

Corollary 4.23. Let T be a colored Yamanouchi semistandard tableau of shape ν, with
content md w( )� , w 1. , and with column 1d( )I � . Then, mℓ d( ) .O O�I .

5. Stability of the the Kronecker coefficients

In this section we state and prove our main result, a stability property for the Kronecker
coefficients in the case when one partition is a hook and the other is a rectangle. Moreover, we
give a bound for the size of the partition starting with which the Kronecker coefficients are
stable. We also show that once the stability bound is reached, no new Schur function appear
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in the decomposition of the Kronecker product. We call this property superstability. We first
introduce some notation.

Fix integers m 2. and d w, 1. . Let t d w� � , and fix a partition mtAO . Let Aw
,O E

be the collection of Yamanouchi colored tableaux TE (for the small bar order) of shape ν,
content mt( ), and total color d. Given T Aw

,� OE E, we define a tableau T( )KO E by performing
the steps below on TE. We denote by R the unique SSYT tableau of (row) shape m( ) and
content ρ, with i i i1S Y Y� �� , i ℓ1 1( )- - I � .

(i) Increase each barred letter of Tb by 1.
(ii) Keep T1 unchanged.
(iii) Insert row R between T1 and T2 (i.e., after row ℓ ( )I ).
(iv) Increase each letter of T2 by 1.

Let m( )O denote the partition obtained from ν by adding a part of length m and rearranging
the parts to form a partition. Since mℓ ( ) .O I , T( )KO E has shape m( )O . Clearly, T( )KO E has total
color d, and it is straightforward to check that it has content mt 1( )� . In the next proposition we
prove that T( )KO E is Yamanouchi, thus showing that KO defines a map from Aw

,O E to Aw 1
,m( )O

�
E.

First we introduce some notation. Let v be the rrw of T1, and let a be the rrw of T Tsk
1( )E .

Denote by �a (respectively, �a) the word obtained from a by increasing (respectively
decreasing) each letter by 1. Let b be the rrw of R. Then the concatenated word va is the rrw
of T sk( )E . The concatenated word v ( )�b a is the rrw of T sk( ( ))KO E . Given a word u, we denote
by ℓ u( ) the length of u, i.e., the number of letters in u. We also denote by u i( ) the number of is
in u.

Proposition 5.1. If T Aw
,� OE E, then T Aw 1

,m( ) ( )
K �O O

�
E E .

Proof. Let T Aw
,� OE E. Thus, TE is Yamanouchi, i.e., the word va is a lattice permutation.

We need to show that T( )KO E is Yamanouchi, i.e., the word v ( )�b a is a lattice permutation.
Let u be an initial factor of v ( )�b a . We need to show that u ui i 1( ) ( ). � for all i. If
ℓ u ℓ v( ) ( )- b , this is true by the definition of row R and the fact that va is lattice permutation.
If ℓ u ℓ v( ) ( )� b , let ũ be the subword of u obtained by deleting vb from its beginning. Thus,
ũ� is an initial factor of a. Then

u u u u u ui i
i i

i
i i

i
i i

i i1
1 1

1
1

1( )˜ ˜ ˜ ˜( ) ( ) ( ) ( ) ( ) ( )Y S Y S Y Y� � � � � � � � � � ��
� �

�
�

�

u u v u v u 0.i
i

i
i i i

1
1 1( ) ( ) ( )( ˜) ( ˜) ( ˜) ( ˜) )( ) ( ) ( ) ( ) .Y Y� � � � � ��

� � � � � �

The last inequality holds because v u( ˜)� is an initial factor of va. ,

Recall that, by corollary 4.10, if w 1. (and thus w 1 2.� ) and T̃E is a colored
Yamanouchi tableau of shape Õ , content md w 1( )� � , and total color d, then mℓ 1˜ ( )O �I � and
row ℓ 1( )I � has content ζ with i i i1[ Y Y� �� . If ν is the partition obtained from Õ by
removing a part of length m, then m˜ ( )O O� . Thus, if w 1. and T Aw 1

,m˜ ( )
� O

�
E E, we can reverse

the steps in the definition of T( )KO E . In the next theorem we show that the obtained tableau is
in Aw

,O E.

Theorem 5.2. The map A A: w w
,

1
,m( )

K lO O O
�

E E is a bijection.

Proof. Let T Aw 1
,m˜ ( )

� O
�

E E. Thus, T̃E is Yamanouchi. Let TE be the tableau obtained from T̃E

by reversing steps (i)-(iv) above. Then TE has shape ν, content mt( ), and total color d. It
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remains to show that TE is Yamanouchi. With v and a as defined above, let u be an initial
factor of va. We show that u ui i 1( ) ( ). � for all i. If ℓ u ℓ v( ) ( )- , this is true because T̃E is
Yamanouchi. If ℓ u ℓ v( ) ( )� , let ũ be the subword of u obtained by deleting v from its
beginning. Then,

u u u ui i
i

i
i

i1
1

1( )˜ ˜( ) ( ) ( ) ( )Y Y� � � � ��
�

�

u ui i
i

i i
i

1 1
1

2 2
2( )( ˜) ( ˜)( ) ( )Y S Y S� � � � � �� �

� �
� �

� �

v u v u 0.i i1 2( ) ( )( ˜) ( ˜) .� �� � � �b b

The last inequality holds because v u( ˜)�b is an initial factor of the rrw of T̃E. ,

We let

A Aw w
,⋃�

O

OE E

and define a map A A: w w 1K l �
E E as follows. For T Aw�E E, with shape ν, we set

T T( ) ( )K K� OE E . Thus, we have proved the following theorem.

Theorem 5.3. If w 1. , the map A A: w w 1K l �
E E is a bijection.

For the rest of the article, if T� is a colored tableau in the natural order, by T( )� E we
mean the tableau obtained when converting T� to the small bar order. Similarly, if TE is a
colored tableau in the small bar order, by T( )�E we mean the tableau obtained when con-
verting TE to the natural order.

Again, fix integers m 2. , and d w, 1. . Let t d w� � , and fix a partition mtAO . We
denote by Bw

,O � the collection of color raisable Yamanouchi colored tableaux T� (for the
natural order) of shape ν, content mt( ), and total color d. Let

B B .w w
,⋃�

O

O� �

Given T Bw
,� O� �, we have T Aw

,( ) � O� E E. We define T T( ) ( (( ) ))Z K�O � � �E . Thus, T�

is converted to the small bar order, mapped by j to Aw 1�
E , and then converted back to the

natural order. In the next theorem, we show that a colored Yamanouchi tableau T� is color
raisable if and only if T( )ZO � is color raisable. Thus, we show that B B: w w

,
1
,m( )

Z lO O O�
�

� is a
bijection.

Theorem 5.4. If w 1. , the map B B: w w
,

1
,m( )

Z lO O O�
�

� is a bijection.

Proof. We show that, given a tableau T Aw�E E, the SW corner in T( )�E is barred if and only
if the SW corner of T( ( ))K �E is barred. Since, by theorem 5.3, j is a bijection, this will prove
the theorem. Note that η is always the same in TE and T( )K E . Let T Aw

,� OE E. We have three
cases.

(i) w 2. , or w=1 and η non-hook. Then, mℓ 1( )O �I � . We show that, when converting
both TE and T( )K E to the natural order, all Jeu-de-Taquin moves are essentially the same.

By the proof of corollary 4.10, row R is precisely row ℓ 1( )I � in TE. Let Ra be row
ℓ 2( )I � in T( )K E . Thus, Ra is precisely row R with each entry increased by 1. Let T1a be the
tableau consisting of the first ℓ 1( )I � rows of TE/Tb, and T2a be the tableau consisting of the
remaining rows of TE/Tb. Then, replacing T T R, ,1 2 by T T R, ,1 2a a a in the steps giving T( )K E

does not change the result.
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The smallest letter in Tb (respectively T b( ( ))K E ) is at least ℓ 2( )I � (respectively
ℓ 3( )I � ), and the largest letter in T1a is at most ℓ 1( )I � . Thus, in the natural order, all the
unbarred letters in T1a are smaller than all of the barred letters (in both TE and T( )K E .) By
propositions 3.1 and 4.5, no unbarred letters greater than ℓ 1( )I � will ever be shifted into T1a.
Therefore, the Jeu-de-Taquin moves that stay in T1a, i.e., in the first ℓ 1( )I � rows, are exactly
the same in TE and T( )K E .

We start by performing Jeu-de-Taquin moves on all letters b d w¯ � � . Now, suppose a
barred letter b̄ has arrived by Jeu-de-Taquin moves in row ℓ 1( )I � of TE, i.e., the last row of
T1a, by bumping a label c. Then b 1� has arrived in the same place in T( )K E . By proposition
3.1, letter ℓ 1( )I � cannot be shifted up to row ℓ ( )I and therefore c ℓ 1( )I� � . Then, by
the semistandard, lattice permutation, and equal content conditions, the box directly below it
must exist and contain c 1� . Figures 8 and 9 illustrate this situation in TE and T( )K E

respectively. In figure 8, the row ℓ 1( )I � is between the lines. In figure 9, viewed from top
to bottom, the rows between the lines are rows ℓ 1( )I � and Ra respectively. In order for b̄ to
move down into row ℓ 1( )I � of TE, we must have c a- . Then, if d exists, we have c d�
(and therefore, c d1 -� ). In each figure, (a) shows the configuration before the shift of b̄,
respectively b 1� , into row ℓ 1( )I � , and (b) shows the shift of b̄, respectively b 1� , into
row ℓ 1( )I � . Figure 9(c) is an additional move in T( )K E , forced by the fact that in T( )K E the
box below c always exists and it is filled with c 1� . We omitted figure 8(c) to emphasize the
additional move in T( )K E . In each figure, (d) shows the next (forced) Jeu-de-Taquin move.

To summarize, in T( )K E , Jeu-de-Taquin moves of b 1� in row ℓ 1( )I � always go
down to row Ra, as in figure 9(c), which is an additional move in T( )K E versus the moves in
TE. Now, in T( )K E , the part of the tableau below the last line is precisely the tableau T2a in TE

with each letter increased by 1, and therefore the remaining moves in TE and T( )K E will be
exactly the same.

Therefore, when performing the Jeu-de-Taquin moves to shift d w� the moves are
essentially the same in TE and T( )K E , and we have no barred letter in row ℓ 1( )I � . After
shifting all d w� , we remove all boxes containing letters d+w or d w� from both tableau.
By proposition 3.1, each new tableau is Yamanouchi, and by the rules of Jeu-de-Taquin
moves they are both semistandard for the small bar order. From TE we obtain a tableau of
shape μ and content md w 1( )� � , with mℓ 1( )N �I � . From T( )K E we obtain a tableau of shape

m( )N and content md w( )� . We repeat the converting process recursively.
Thus, the SW corner is either barred or unbarred in both T( )�E and T( ( ))K �E .
(ii) w=1 and η is a non-column hook. Notice that when converting from the small bar

order to the natural order, barred letters are not bumped by barred letters. Suppose first that
mℓ 1( )O �I � . In this case, by the same argument as in case (i), the Jeu-de-Taquin moves for all

barred letters greater than ℓ 1( )I � are essentially the same in TE and T( )K E . Once all these
barred letters have been shifted, if the SW corner is barred, the shifting of ℓ 1( )I � in TE

(respectively of ℓ 2( )I � in T( )K E ) will leave it barred. If the SW corner is unbarred and
0ℓ 2( )O vI � , then the shifting of ℓ 1( )I � in TE (respectively of ℓ 2( )I � in T( )K E ) will

leave it unbarred (as the label in the SW corner of TE is at least ℓ 1( )I � .) If the SW corner is
unbarred and 0ℓ 2( )O �I � , we must have m=2 and d=3. One can use Maple to verify that
superstability holds in this case.

Now suppose m 1ℓ 1( )O � �I � . If d( )I � , both TE and T( )K E are color raisable. If η is
not a row, we use the notation of figure 6 in TE. In TE, by proposition 4.15, b b k 1k 1� � �
for all k ℓ ℓ1 ( ) ( )- - O I� . By construction, the same is true of T( )K E . If b aℓ1 ( )- I , by
proposition 4.20, TE is color raisable if and only if T( )K E is. If a bℓ 1( ) �I , by proposition
4.19, both TE and T( )K E are color raisable.
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(iii) w=1 and η is a column. By propositions 4.21 and 4.22, TE is color raisable if and
only if T( )K E is. ,

We define a map B B: w w 1Z l�
�

� as follows. For T Bw�� �, with shape ν, we
set T T( ) ( )Z Z� O� � .

Theorems 5.3 and 5.4, together with Blasiak’s combinatorial rule, lead to our main
theorem.

Theorem 5.5 Superstability. Fix integers m 1. and d 0. . Then, whenever t d 1. � , we
have

g m n d g m n d m, , 1 , , , 1 , ,t d t d m1( ) ( )( ) ( ) ( )( ) ( )O O� � � ��

where n=mt. Moreover, if g m n d m, , 1 , 0t d1(( ) ( ) )H� � �� , then there exists mtAO
such that m( )H O� .

6. Final remarks

As stated in theorem 5.5, the superstability property for the Kronecker product of a Schur
function indexed by a hook partition and one indexed by a rectangular partition proved in this
article is much stronger than usual stability properties. Starting with the stability bound, as
one increases the size of the partitions by m, no new partitions are introduced. Therefore, if
n m d w( )� � and w 1. , one can completely recover the decomposition of the Kronecker
product

s sn d m,1d d w( ) ( )*� �

from the Kronecker product

s s .m d d m1 ,1d d 1( ) ( )( ) *� � �

We note that the bound n=tm, where t d 1� � , starting with which superstability
holds, is sharp. If t=d, superstability fails, as seen in the following example calculated using
sage. Let m d2, 3� � . Then when n=md (i.e., w= 0), we have

Figure 8. Jeu-de-Taquin moves for b in T ≺.

Figure 9. Jeu-de-Taquin moves for b 1� in T( )K E .
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s s s s s s s ,2,2,2 3,1,1,1 2,2,2 3,1,1,1 3,2,1 4,1,1 4,2( ) ( ) ( ) ( ) ( ) ( ) ( )* � � � � �

but when n m d 1( )� � (i.e., w= 1), we have

s s s s s s s
s s s s s .

2,2,2,2 5,1,1,1 2,2,2,2 3,2,1,1,1 3,2,2,1 3,3,1,1 4,1,1,1,1

4,2,1,1 4,2,1,1 4,2,2 4,3,1 5,1,1,1

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ) ( ) ( ) ( )

* � � � � �
� � � � �

The bound n=tm, where t d 1� � , starting with which the regular stability of Kro-
necker coefficients holds, i.e.,

g m n d g m n d m, , 1 , , , 1 , ,t d t d m1( ) ( )( ) ( ) ( )( ) ( )O O� � � ��

is nearly sharp.
If n d m1( )� � , we have verified using sage that

g 3 , 5, 1 , 5, 2, 1, 1 23 4( )( ) ( ) ( ) �

while

g 3 , 8, 1 , 5, 3, 2, 1, 1 3.4 4( )( ) ( ) ( ) �

Thus, the stability property fails in this case. We are uncertain what happens if w=0.
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